Investigar las consecuencias efectivas sobre los activos de un sistema urbano al enfrentar amenazas basadas en escenarios
Contenido principal del artículo
Los activos urbanos se generan a través de elementos físicos de una ciudad como parte de la infraestructura crítica. Para garantizar un futuro urbano sostenible, las empresas y las personas innovadoras también son activos urbanos esenciales. Ante la posible ocurrencia de peligros naturales y provocados por el hombre, la arquitectura, la densidad de población, los lugares de reunión y los sistemas de infraestructura conectados en las ciudades son eficientes. Los peligros provocados por el hombre son accidentes causados por personas que ocurren en asentamientos humanos o cerca de ellos. Estas son cosas que tienen un impacto importante en la calidad de vida, el estado de salud e incluso la mortalidad. Habrá que analizar las consecuencias de tales peligros en la ciudad. Para ello se han analizado las relaciones causales entre los activos de un municipio frente a los riesgos naturales y provocados por el hombre mediante el método Fuzzy DEMATEL. Según los resultados de esta investigación, los elementos físicos tienen un efecto más importante que cualquier otro factor sobre otros activos de las ciudades en riesgo de sufrir amenazas provocadas por el hombre. Frente a los peligros del hombre, la actividad económica puede vincularse más estrechamente a la población y a los elementos físicos. Los elementos físicos tienen un mayor impacto en la población y las actividades económicas cuando se enfrentan a peligros ambientales. Los elementos físicos interactúan más con la población y las actividades económicas. En línea con los resultados, más importantes que los elementos físicos son la población y las actividades económicas. Por último, se sugiere evaluar los riesgos de accidentes peligrosos y determinar sus consecuencias teniendo en cuenta el peor de los casos.
Alavipoor, F., Karimi, S., Jafari, H., Hassanvand, M., & Ziyarati, M. (2024). Causal relationships of health risk of air pollution in industrial area. Entorno Geográfico, (28), e24113697. https://doi.org/10.25100/eg.v0i28.13697 DOI: https://doi.org/10.25100/eg.v0i28.13697
Alexander, D. (2000). Scenario methodology for teaching principles of emergency management. Disaster Prevention and Management: An International Journal, 9(2), 89-97. https://doi.org/10.1108/09653560010326969 DOI: https://doi.org/10.1108/09653560010326969
Anbazhagan, P., Srinivas, S., & Chandran, D. (2012). Classification of road damage due to earthquakes. Natural Hazards, 60, 425-460. https://doi.org/10.1007/s11069-011-0025-0 DOI: https://doi.org/10.1007/s11069-011-0025-0
Ansal, A., Kurtuluş, A., & Tönük, G. (2010). Seismic microzonation and earthquake damage scenarios for urban areas. Soil Dynamics and Earthquake Engineering, 30(11), 1319-1328. https://doi.org/10.1016/j.soildyn.2010.06.004 DOI: https://doi.org/10.1016/j.soildyn.2010.06.004
Atun, F. (2014). Understanding Effects of Complexity in Cities During Disasters. In C. Walloth, J. Gurr, & J. Schmidt (Eds.), Understanding Complex Urban Systems: Multidisciplinary Approaches to Modeling (pp. 51-65). Springer International Publishing. https://doi.org/10.1007/978-3-319-02996-2_4 DOI: https://doi.org/10.1007/978-3-319-02996-2_4
Badina, S., Babkin, R., & Mikhaylov, A. (2022). Approaches to Assessing the Vulnerability of Large City Population to Natural and Man-Made Hazards Using Mobile Operators Data (Case Study of Moscow, Russia). In V. Wohlgemuth, S. Naumann, G. Behrens, & H. Arndt (Eds.), Advances and New Trends in Environmental Informatics (pp. 171-186). Springer. DOI: https://doi.org/10.1007/978-3-030-88063-7_11
Barredo, J., & Engelen, G. (2010). Land Use Scenario Modeling for Flood Risk Mitigation. Sustainability, 2(5), 1327-1344. https://doi.org/10.3390/su2051327 DOI: https://doi.org/10.3390/su2051327
Berkeley Lab. (2019). Our Vision of Urban Science Research. Berkeley Lab. https://tinyurl.com/2s3ttfy7
Bhuyian, N., Kalyanapu, A., Nardi, F. (2015). Approach to Digital Elevation Model Correction by Improving Channel Conveyance. Journal of Hydrologic Engineering, 20(5), 04014062. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001020 DOI: https://doi.org/10.1061/(ASCE)HE.1943-5584.0001020
Bhuyian, N., & Kalyanapu, A. (2018). Accounting digital elevation uncertainty for flood consequence assessment. Journal of Flood Risk Management, 11(S2), S1051-S1062. https://doi.org/10.1111/jfr3.12293 DOI: https://doi.org/10.1111/jfr3.12293
Birla Institute of Technology & Science. (2023). Financial markets - reading assignment. Birla Institute of Technology & Science. https://tinyurl.com/3z3wy3jw
Bloom, D., Canning, D., & Fink, G. (2008). Urbanization and the Wealth of Nations. Science, 319(5864), 772-775. https://doi.org/10.1126/science.1153057 DOI: https://doi.org/10.1126/science.1153057
Chan, N. (2015). Impacts of Disasters and Disaster Risk Management in Malaysia: The Case of Floods. In D. Aldrich, S. Oum, & Y. Sawada (Eds.), Resilience and Recovery in Asian Disasters: Community Ties, Market Mechanisms, and Governance (pp. 239-265). Springer Japan. https://doi.org/10.1007/978-4-431-55022-8_12 DOI: https://doi.org/10.1007/978-4-431-55022-8_12
Collins, L. (2000). Disaster management and preparedness. CRC Press. DOI: https://doi.org/10.1201/9781420032659
Connor, C., Hill, B., Winfrey, B., Franklin, N., & La Femina, P. (2001). Estimation of Volcanic Hazards from Tephra Fallout. Natural Hazards Review, 2(1), 33-42. https://doi.org/10.1061/(ASCE)1527-6988(2001)2:1(33) DOI: https://doi.org/10.1061/(ASCE)1527-6988(2001)2:1(33)
Cremen, G., Galasso, C., & McCloskey, J. (2022). Modelling and quantifying tomorrow's risks from natural hazards. Science of The Total Environment, 817, 152552. https://doi.org/10.1016/j.scitotenv.2021.152552 DOI: https://doi.org/10.1016/j.scitotenv.2021.152552
Dai, Q., Zhu, X., Zhuo, L., Han, D., Liu, Z., & Zhang, S. (2020). A hazard-human coupled model (HazardCM) to assess city dynamic exposure to rainfall-triggered natural hazards. Environmental Modelling & Software, 127, 104684. https://doi.org/10.1016/j.envsoft.2020.104684 DOI: https://doi.org/10.1016/j.envsoft.2020.104684
Davies, T. (2015). Chapter 1 - Landslide Hazards, Risks, and Disasters: Introduction. In J. Shroder & T. Davies (Eds.), Landslide Hazards, Risks, and Disasters (pp. 1-16). Academic Press. https://doi.org/10.1016/B978-0-12-396452-6.00001-X DOI: https://doi.org/10.1016/B978-0-12-396452-6.00001-X
De Lotto, R., Gazzola, V., & Venco, E. (1-3 de febrero de 2018). Exposure and Risk reduction strategy: the role of Functional Change. Proceedings of the International Conference on Seismic and Energy Renovation for Sustainable Cities (SER4SC 2018), Catania, Italy.
De Lotto, R., Pietra, C., & Venco, E. M. (2019). Risk Analysis: A Focus on Urban Exposure Estimation. In S. Misra, O. Gervasi, B. Murgante, E. Stankova, V. Korkhov, C. Torre, A. Rocha, D. Taniar, B. Apduhan, & E. Tarantino, Computational Science and Its Applications – ICCSA 2019 (pp. 407-423). Springer. DOI: https://doi.org/10.1007/978-3-030-24296-1_33
Dixon, T., Amelung, F., Ferretti, A., Novali, F., Rocca, F., Dokka, R., Sella, G., Kim, S., Wdowinski, S., & Whitman, D. (2006). Subsidence and flooding in New Orleans. Nature, 441, 587-588. https://doi.org/10.1038/441587a DOI: https://doi.org/10.1038/441587a
Dou, M., Chen, J., Chen, D., Chen, X., Deng, Z., Zhang, X., Xu, K., & Wang, J. (2014). Modeling and simulation for natural disaster contingency planning driven by high-resolution remote sensing images. Future Generation Computer Systems, 37, 367-377. https://doi.org/10.1016/j.future.2013.12.018 DOI: https://doi.org/10.1016/j.future.2013.12.018
El Sayed, M. (2022). Beirut Ammonium Nitrate Explosion: A Man-Made Disaster in Times of the COVID-19 Pandemic. Disaster Med Public Health Prep, 16(3), 1203-1207. https://doi.org/10.1017/dmp.2020.451 DOI: https://doi.org/10.1017/dmp.2020.451
Eyles, J. (2007). Urban assets and urban sustainability: Challenges, design and management. WIT Transactions on Ecology and the Environment, 102, 9. https://doi.org/10.2495/SDP070131 DOI: https://doi.org/10.2495/SDP070131
Figueroa, R. (2014). Strategies to Reduce the Risk of Building Collapse in Developing Countries [Tesis de doctorado, Carnegie Mellon University]. Carnegie Mellon University.
Fuchs, S., Birkmann, J., & Glade, T. (2012). Vulnerability assessment in natural hazard and risk analysis: current approaches and future challenges. Natural Hazards, 64, 1969-1975. https://doi.org/10.1007/s11069-012-0352-9 DOI: https://doi.org/10.1007/s11069-012-0352-9
Galderisi, A., Mazzeo, G., & Pinto, F. (2016). Cities Dealing with Energy Issues and Climate- Related Impacts: Approaches, Strategies and Tools for a Sustainable Urban Development. In R. Papa & R. Fistola (Eds.), Smart Energy in the Smart City: Urban Planning for a Sustainable Future (pp. 199-217). Springer International Publishing. https://doi.org/10.1007/978-3-319-31157-9_11 DOI: https://doi.org/10.1007/978-3-319-31157-9_11
Gasper, R., Blohm, A., & Ruth, M. (2011). Social and economic impacts of climate change on the urban environment. Current Opinion in Environmental Sustainability, 3(3), 150-157. https://doi.org/10.1016/j.cosust.2010.12.009 DOI: https://doi.org/10.1016/j.cosust.2010.12.009
Gibbs, L., Jehangir, H., Kwong, E., & Little, A. (2022). Universities and multiple disaster scenarios: A transformative framework for disaster resilient universities. International Journal of Disaster Risk Reduction, 78, 103132. https://doi.org/10.1016/j.ijdrr.2022.103132 DOI: https://doi.org/10.1016/j.ijdrr.2022.103132
Godschalk, D. (2003). Urban hazard mitigation: Creating resilient cities. Natural Hazards Review, 4(3), 136-143. https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136) DOI: https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(136)
Guang-wang, Y., & Hua-li, Q. (2011). Fuzzy Comprehensive Evaluation of Fire Risk on High-Rise Buildings. Procedia Engineering, 11, 620-624. https://doi.org/10.1016/j.proeng.2011.04.705 DOI: https://doi.org/10.1016/j.proeng.2011.04.705
Gye, H., Seo, S., Bach, Q., Ha, D., & Lee, C. (2019). Quantitative risk assessment of an urban hydrogen refueling station. International Journal of Hydrogen Energy, 44(2), 1288-1298. https://doi.org/10.1016/j.ijhydene.2018.11.035 DOI: https://doi.org/10.1016/j.ijhydene.2018.11.035
Han, J., Fontanos, P., Fukushi, K., Herath, S., Heeren, N., Naso, V., Cecchi, C., Edwards, P., & Takeuchi, K. (2012). Innovation for sustainability: toward a sustainable urban future in industrialized cities. Sustainability Science, 7, 91-100. https://doi.org/10.1007/s11625-011-0152-2 DOI: https://doi.org/10.1007/s11625-011-0152-2
Ha, N., Sayama, T., Sassa, K., Takara, K., Uzuoka, R., Dang, K., & Pham, T. (2020). A coupled hydrological-geotechnical framework for forecasting shallow landslide hazard—a case study in Halong City, Vietnam. Landslides, 17, 1619-1634. https://doi.org/10.1007/s10346-020-01385-8 DOI: https://doi.org/10.1007/s10346-020-01385-8
Hallegatte, S., & Dumas, P. (2009). Can natural disasters have positive consequences? Investigating the role of embodied technical change. Ecological Economics, 68(3), 777-786. https://doi.org/10.1016/j.ecolecon.2008.06.011 DOI: https://doi.org/10.1016/j.ecolecon.2008.06.011
Hayes, J., Wilson, T., Deligne, N., Lindsay, J., Leonard, G., Tsang, S.., & Fitzgerald, R. (2020). Developing a suite of multi-hazard volcanic eruption scenarios using an interdisciplinary approach. Journal of Volcanology and Geothermal Research, 392, 106763. https://doi.org/10.1016/j.jvolgeores.2019.106763 DOI: https://doi.org/10.1016/j.jvolgeores.2019.106763
Hingorani, R., Tanner, P., Prieto, M., & Lara, C. (2020). Consequence classes and associated models for predicting loss of life in collapse of building structures. Structural Safety, 85, 101910. https://doi.org/10.1016/j.strusafe.2019.101910 DOI: https://doi.org/10.1016/j.strusafe.2019.101910
Hong, T., Chen, Y., Luo, X., Luo, N., & Lee, S. (2020). Ten questions on urban building energy modeling. Building and Environment, 168, 106508. https://doi.org/10.1016/j.buildenv.2019.106508 DOI: https://doi.org/10.1016/j.buildenv.2019.106508
Hughes, R. (2003). The flow of human crowds. Annual Review of Fluid Mechanics, 35, 169-182. https://doi.org/10.1146/annurev.fluid.35.101101.161136 DOI: https://doi.org/10.1146/annurev.fluid.35.101101.161136
Johnson, P., Johnson, C., & Sutherland, C. (2012). Stay or Go? Human Behavior and Decision Making in Bushfires and Other Emergencies. Fire Technology, 48, 137-153. https://doi.org/10.1007/s10694-011-0213-1 DOI: https://doi.org/10.1007/s10694-011-0213-1
Leader, A., Gaustad, G., Tomaszewski, B., & Babbitt, C. (2018). The Consequences of Electronic Waste Post-Disaster: A Case Study of Flooding in Bonn, Germany. Sustainability, 10(11), 4193. https://doi.org/10.3390/su10114193 DOI: https://doi.org/10.3390/su10114193
Lee, D., Park, J., & Kim, H. (2004). A study on experiment of human behavior for evacuation simulation. Ocean Engineering, 31(8-9), 931-941. https://doi.org/10.1016/j.oceaneng.2003.12.003 DOI: https://doi.org/10.1016/j.oceaneng.2003.12.003
Lee, S., & Park, I. (2013). Application of decision tree model for the ground subsidence hazard mapping near abandoned underground coal mines. Journal of Environmental Management, 127, 166-176. https://doi.org/10.1016/j.jenvman.2013.04.010 DOI: https://doi.org/10.1016/j.jenvman.2013.04.010
Leider, J., DeBruin, D., Reynolds, N., Koch, A., & Seaberg, J. (2017). Ethical Guidance for Disaster Response, Specifically Around Crisis Standards of Care: A Systematic Review. American Journal of Public Health, 107(9), e1-e9. https://doi.org/10.2105/ajph.2017.303882 DOI: https://doi.org/10.2105/AJPH.2017.303882
Leppold, C., Gibbs, L., Block, K., Reifels, L., & Quinn, P. (2022). Public health implications of multiple disaster exposures. The Lancet Public Health, 7(3), e274-e286. https://doi.org/10.1016/S2468-2667(21)00255-3 DOI: https://doi.org/10.1016/S2468-2667(21)00255-3
Liu, Y., Chen, Z., Wang, J., Hu, B., Ye, M., & Xu, S. (2012). Large-scale natural disaster risk scenario analysis: a case study of Wenzhou City, China. Natural Hazards, 60, 1287-1298. https://doi.org/10.1007/s11069-011-9909-2 DOI: https://doi.org/10.1007/s11069-011-9909-2
Lixin, Y., Jie, W., Chuanqing, S., Guo, J., Yanxiang, J., & Liu, B. (2010). Land Subsidence Disaster Survey and Its Economic Loss Assessment in Tianjin, China. Natural Hazards Review, 11(1), 35-41. https://doi.org/10.1061/(ASCE)1527-6988(2010)11:1(35) DOI: https://doi.org/10.1061/(ASCE)1527-6988(2010)11:1(35)
Lyu, H., Shen, S., Zhou, A., & Yang, J. (2019). Perspectives for flood risk assessment and management for mega-city metro system. Tunnelling and Underground Space Technology, 84, 31-44. https://doi.org/10.1016/j.tust.2018.10.019 DOI: https://doi.org/10.1016/j.tust.2018.10.019
Lyu, H., Shen, S., Zhou, A., & Yang, J. (2020). Risk assessment of mega-city infrastructures related to land subsidence using improved trapezoidal FAHP. Science of The Total Environment, 717, 135310. https://doi.org/10.1016/j.scitotenv.2019.135310 DOI: https://doi.org/10.1016/j.scitotenv.2019.135310
Mattsson, L., & Jenelius, E. (2015). Vulnerability and resilience of transport systems – A discussion of recent research. Transportation Research Part A: Policy and Practice, 81, 16-34. https://doi.org/10.1016/j.tra.2015.06.002 DOI: https://doi.org/10.1016/j.tra.2015.06.002
Mertens, K., Jacobs, L., Maes, J., Poesen, J., Kervyn, M., & Vranken, L. (2018). Disaster risk reduction among households exposed to landslide hazard: A crucial role for self-efficacy? Land Use Policy, 75, 77-91. https://doi.org/10.1016/j.landusepol.2018.01.028 DOI: https://doi.org/10.1016/j.landusepol.2018.01.028
Misuri, A., Antonioni, G., & Cozzani, V. (2020). Quantitative risk assessment of domino effect in Natech scenarios triggered by lightning. Journal of Loss Prevention in the Process Industries, 64, 104095. https://doi.org/10.1016/j.jlp.2020.104095 DOI: https://doi.org/10.1016/j.jlp.2020.104095
Mohamed, I. (2007). An overview on disasters. Disaster Prevention and Management: An International Journal, 16(5), 687-703. https://doi.org/10.1108/09653560710837000 DOI: https://doi.org/10.1108/09653560710837000
Moshashaei, P., & Alizadeh, S. (2017). Fire Risk Assessment: A Systematic Review of the Methodology and Functional Areas. Iranian Journal of Health, Safety & Environment, 4(1), 654-669. https://tinyurl.com/3j63ku23
Nardi, F., Grimaldi, S., Santini, M., Petroselli, A., & Ubertini, L. (2008). Hydrogeomorphic properties of simulated drainage patterns using digital elevation models: the flat area issue / Propriétés hydro-géomorphologiques de réseaux de drainage simulés à partir de modèles numériques de terrain: la question des zones planes. Hydrological Sciences Journal, 53(6), 1176-1193. https://doi.org/10.1623/hysj.53.6.1176 DOI: https://doi.org/10.1623/hysj.53.6.1176
Nazif, S., Mohammadpour, M., & Eslamian, S. (2021). Urban Disaster Management and Resilience. In S. Eslamian & F. Eslamian (Eds.), Handbook of Disaster Risk Reduction for Resilience: New Frameworks for Building Resilience to Disasters (pp. 157-185). Springer International Publishing. https://doi.org/10.1007/978-3-030-61278-8_7 DOI: https://doi.org/10.1007/978-3-030-61278-8_7
Olsson, P., & Regan, M. (2001). A comparison between actual and predicted evacuation times. Safety Science, 38(2), 139-145. https://doi.org/10.1016/S0925-7535(00)00064-3 DOI: https://doi.org/10.1016/S0925-7535(00)00064-3
Orville, R., Huffines, G., Nielsen, J., Zhang, R., Ely, B., Steiger, S., Philips, S., Allen, S., & Read, W. (2001). Enhancement of cloud-to-ground lightning over Houston, Texas. Geophysical Research Letters, 28(13), 2597-2600. https://doi.org/10.1029/2001GL012990 DOI: https://doi.org/10.1029/2001GL012990
Osman, T. (2021). A framework for cities and environmental resilience assessment of local governments. Cities, 118, 103372. https://doi.org/10.1016/j.cities.2021.103372 DOI: https://doi.org/10.1016/j.cities.2021.103372
Othman, R. (2008). Enhancing the effectiveness of the balanced scorecard with scenario planning. International Journal of Productivity and Performance Management, 57(3), 259-266. https://doi.org/10.1108/17410400810857266 DOI: https://doi.org/10.1108/17410400810857266
Pan, X., Han, C., Dauber, K., & Law, K. (2006). Human and social behavior in computational modeling and analysis of egress. Automation in Construction, 15(4), 448-461. https://doi.org/10.1016/j.autcon.2005.06.006 DOI: https://doi.org/10.1016/j.autcon.2005.06.006
Papathoma, M., Neuhäuser, B., Ratzinger, K., Wenzel, H., & Dominey, D. (2007). Elements at risk as a framework for assessing the vulnerability of communities to landslides. Nat. Hazards Earth Syst. Sci., 7(6), 765-779. https://doi.org/10.5194/nhess-7-765-2007 DOI: https://doi.org/10.5194/nhess-7-765-2007
Peng, J., & Peng, F. (2018). A GIS-based evaluation method of underground space resources for urban spatial planning: Part 1 methodology. Tunnelling and Underground Space Technology, 74, 82-95. https://doi.org/10.1016/j.tust.2018.01.002 DOI: https://doi.org/10.1016/j.tust.2018.01.002
Peng, J., Sun, X., Wang, W., & Sun, G. (2016). Characteristics of land subsidence, earth fissures and related disaster chain effects with respect to urban hazards in Xi’an, China. Environmental Earth Sciences, 75, 1190. https://doi.org/10.1007/s12665-016-5928-3 DOI: https://doi.org/10.1007/s12665-016-5928-3
Pinto, O. (7-11 de octubre de 2013). Lightning and climate: A review. 2013 International Symposium on Lightning Protection (XII SIPDA), Piscataway, NJ. DOI: https://doi.org/10.1109/SIPDA.2013.6729250
Pontiggia, M., Derudi, M., Alba, M., Scaioni, M., & Rota, R. (2010). Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling. Journal of Hazardous Materials, 176(1-3), 589-596. https://doi.org/10.1016/j.jhazmat.2009.11.070 DOI: https://doi.org/10.1016/j.jhazmat.2009.11.070
Qiao, Y., Peng, F., & Wang, Y. (2017). Monetary valuation of urban underground space: A critical issue for the decision-making of urban underground space development. Land Use Policy, 69, 12-24. https://doi.org/10.1016/j.landusepol.2017.08.037 DOI: https://doi.org/10.1016/j.landusepol.2017.08.037
Rahmati, O., Golkarian, A., Biggs, T., Keesstra, S., Mohammadi, F., & Daliakopoulos, I. (2019). Land subsidence hazard modeling: Machine learning to identify predictors and the role of human activities. Journal of Environmental Management, 236, 466-480. https://doi.org/10.1016/j.jenvman.2019.02.020 DOI: https://doi.org/10.1016/j.jenvman.2019.02.020
Roozbahani, A., Zahraie, B., & Tabesh, M. (2013). Integrated risk assessment of urban water supply systems from source to tap. Stochastic Environmental Research and Risk Assessment, 27, 923-944. https://doi.org/10.1007/s00477-012-0614-9 DOI: https://doi.org/10.1007/s00477-012-0614-9
Salimi, M., & Al-Ghamdi, S. (2020). Climate change impacts on critical urban infrastructure and urban resiliency strategies for the Middle East. Sustainable Cities and Society, 54, 101948. https://doi.org/10.1016/j.scs.2019.101948 DOI: https://doi.org/10.1016/j.scs.2019.101948
Shabou, S., Ruin, I., Lutoff, C., Debionne, S., Anquetin, S., Creutin, J., & Beaufils, X. (2017). MobRISK: a model for assessing the exposure of road users to flash flood events. Nat. Hazards Earth Syst. Sci., 17(9), 1631-1651. https://doi.org/10.5194/nhess-17-1631-2017 DOI: https://doi.org/10.5194/nhess-17-1631-2017
Shen, G., & Hwang, S. (2018). Revealing global hot spots of technological disasters: 1900–2013. Journal of Risk Research, 21(3), 361-393. https://doi.org/10.1080/13669877.2016.1179214 DOI: https://doi.org/10.1080/13669877.2016.1179214
Shen, S., Cui, Q., Ho, C., & Xu, Y. (2016). Ground Response to Multiple Parallel Microtunneling Operations in Cemented Silty Clay and Sand. Journal of Geotechnical and Geoenvironmental Engineering, 142(5), 04016001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001441 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0001441
Shen, S., Ma, L., Xu, Y., & Yin, Z. (2013). Interpretation of increased deformation rate in aquifer IV due to groundwater pumping in Shanghai. Canadian Geotechnical Journal, 50(11), 1129-1142. https://doi.org/10.1139/cgj-2013-0042 DOI: https://doi.org/10.1139/cgj-2013-0042
Shen, S., Wang, J., Wu, H., Xu, Y., Ye, G., & Yin, Z. (2015a). Evaluation of hydraulic conductivity for both marine and deltaic deposits based on piezocone testing. Ocean Engineering, 110, 174-182. https://doi.org/10.1016/j.oceaneng.2015.10.011 DOI: https://doi.org/10.1016/j.oceaneng.2015.10.011
Shen, S., Wu, Y., & Misra, A. (2017). Calculation of head difference at two sides of a cut-off barrier during excavation dewatering. Computers and Geotechnics, 91, 192-202. https://doi.org/10.1016/j.compgeo.2017.07.014 DOI: https://doi.org/10.1016/j.compgeo.2017.07.014
Shen, S., Wu, Y., Xu, Y., Hino, T., & Wu, H. (2015b). Evaluation of hydraulic parameters from pumping tests in multi-aquifers with vertical leakage in Tianjin. Computers and Geotechnics, 68, 196-207. https://doi.org/10.1016/j.compgeo.2015.03.011 DOI: https://doi.org/10.1016/j.compgeo.2015.03.011
Shen, S., & Xu, Y. (2011). Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal, 48(9), 1378-1392. https://doi.org/10.1139/t11-049 DOI: https://doi.org/10.1139/t11-049
Shields, T., Boyce, K., & McConnell, N. (2009). The behaviour and evacuation experiences of WTC 9/11 evacuees with self-designated mobility impairments. Fire Safety Journal, 44(6), 881-893. https://doi.org/10.1016/j.firesaf.2009.04.004 DOI: https://doi.org/10.1016/j.firesaf.2009.04.004
Shirzaei, M., & Bürgmann, R. (2018). Global climate change and local land subsidence exacerbate inundation risk to the San Francisco Bay Area. Science Advances, 4(3), eaap9234. https://doi.org/doi:10.1126/sciadv.aap9234 DOI: https://doi.org/10.1126/sciadv.aap9234
Smith, R., & Wiek, A. (2012). Achievements and Opportunities in Initiating Governance for Urban Sustainability. Environment and Planning C: Government and Policy, 30(3), 429-447. https://doi.org/10.1068/c10158 DOI: https://doi.org/10.1068/c10158
Sohankar, Z. (2024). Evaluating the safety and aesthetic of a city park (Case study: Saee Park in Tehran). Entorno Geográfico, (28), e24013342. https://doi.org/10.25100/eg.v0i28.13342 DOI: https://doi.org/10.25100/eg.v0i28.13342
Souto, L., Taylor, P., & Wilkinson, J. (2023). Probabilistic impact assessment of lightning strikes on power systems incorporating lightning protection design and asset condition. International Journal of Electrical Power & Energy Systems, 148, 108974. https://doi.org/10.1016/j.ijepes.2023.108974 DOI: https://doi.org/10.1016/j.ijepes.2023.108974
Sun, X., & Luo, M. (2014). Fire Risk Assessment for Super High-rise Buildings. Procedia Engineering, 71, 492-501. https://doi.org/10.1016/j.proeng.2014.04.071 DOI: https://doi.org/10.1016/j.proeng.2014.04.071
Tosun, J., & Howlett, M. (2021). Managing slow onset events related to climate change: the role of public bureaucracy. Current Opinion in Environmental Sustainability, 50, 43-53. https://doi.org/10.1016/j.cosust.2021.02.003 DOI: https://doi.org/10.1016/j.cosust.2021.02.003
UNDRR. (2013). Poorly planned urban development. UNDRR. https://tinyurl.com/3z6n6vv6
United Nations University - Institute for Environment and Human Security. (2023). Urbanization. UNU EHS. https://tinyurl.com/y6s4rjpj
Wang, J., Gao, W., Xu, S., & Yu, L. (2012). Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China. Climatic Change, 115, 537-558. https://doi.org/10.1007/s10584-012-0468-7 DOI: https://doi.org/10.1007/s10584-012-0468-7
Wang, X., Yang, T., Xu, Y., & Shen, S. (2019). Evaluation of optimized depth of waterproof curtain to mitigate negative impacts during dewatering. Journal of Hydrology, 577, 123969. https://doi.org/10.1016/j.jhydrol.2019.123969 DOI: https://doi.org/10.1016/j.jhydrol.2019.123969
Wang, Y., Cai, L., & Chen, Y. (25-26 de septiemnre de 2015). Fuzzy Comprehensive Evaluation Method and Its Application in Existing Buildings Safety, International Forum on Energy, Environment Science and Materials (IFEESM 2015), Shenzhen, China. https://doi.org/10.2991/ifeesm-15.2015.251 DOI: https://doi.org/10.2991/ifeesm-15.2015.251
Westcott, N. (1995). Summertime Cloud-to-Ground Lightning Activity around Major Midwestern Urban Areas. Journal of Applied Meteorology and Climatology, 34(7), 1633-1642. https://tinyurl.com/3nppzrtf DOI: https://doi.org/10.1175/1520-0450-34.7.1633
Williams, D., Máñez, M., Sutherland, C., Celliers, L., & Scheffran, J. (2019). Vulnerability of informal settlements in the context of rapid urbanization and climate change. Environment and Urbanization, 31(1), 157-176. https://doi.org/10.1177/0956247818819694 DOI: https://doi.org/10.1177/0956247818819694
Windapo, A., & Rotimi, J. (2012). Contemporary Issues in Building Collapse and Its Implications for Sustainable Development. Buildings, 3(2), 283-299. https://doi.org/10.3390/buildings2030283 DOI: https://doi.org/10.3390/buildings2030283
Winter, M., & Bromhead, E. (2012). Landslide risk: some issues that determine societal acceptance. Natural Hazards, 62, 169-187. https://doi.org/10.1007/s11069-011-9987-1 DOI: https://doi.org/10.1007/s11069-011-9987-1
Wu, H., Shen, S., & Yang, J. (2017). Identification of Tunnel Settlement Caused by Land Subsidence in Soft Deposit of Shanghai. Journal of Performance of Constructed Facilities, 31(6), 04017092. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001082 DOI: https://doi.org/10.1061/(ASCE)CF.1943-5509.0001082
Wu, Y., Lyu, H., Han, J., & Shen, S. (2019). Dewatering–Induced Building Settlement around a Deep Excavation in Soft Deposit in Tianjin, China. Journal of Geotechnical and Geoenvironmental Engineering, 145(5), 05019003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002045 DOI: https://doi.org/10.1061/(ASCE)GT.1943-5606.0002045
Xin, J., & Huang, C. (2013). Fire risk analysis of residential buildings based on scenario clusters and its application in fire risk management. Fire Safety Journal, 62, 72-78. https://doi.org/10.1016/j.firesaf.2013.09.022 DOI: https://doi.org/10.1016/j.firesaf.2013.09.022
Xu, Y., Yan, X., Shen, S., & Zhou, A. (2019). Experimental investigation on the blocking of groundwater seepage from a waterproof curtain during pumped dewatering in an excavation. Hydrogeology Journal, 27, 2659-2672. https://doi.org/10.1007/s10040-019-01992-3 DOI: https://doi.org/10.1007/s10040-019-01992-3
Yair, Y. (2018). Lightning hazards to human societies in a changing climate. Environmental research letters, 13(12), 123002. https://doi.org/10.1088/1748-9326/aaea86 DOI: https://doi.org/10.1088/1748-9326/aaea86
Yang, Y., Li, S., & Zhang, P. (2022). Data-driven accident consequence assessment on urban gas pipeline network based on machine learning. Reliability Engineering & System Safety, 219, 108216. https://doi.org/10.1016/j.ress.2021.108216 DOI: https://doi.org/10.1016/j.ress.2021.108216
Zeqing, S., Raghuveer, M., & Jingliang, H. (12-15 de mayo de 2002). Complete assessment of impact of lightning strikes on buried cables. IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering. Conference Proceedings (Cat. No.02CH37373), Winnipeg, MB, Canada. https://doi.org/10.1109/CCECE.2002.1015170 DOI: https://doi.org/10.1109/CCECE.2002.1015170
Zhang, Y. (2013). Analysis on Comprehensive Risk Assessment for Urban Fire: The Case of Haikou City. Procedia Engineering, 52, 618-623. https://doi.org/10.1016/j.proeng.2013.02.195 DOI: https://doi.org/10.1016/j.proeng.2013.02.195
Zhao, J., Peng, F., Wang, T., Zhang, X., & Jiang, B. (2016). Advances in master planning of urban underground space (UUS) in China. Tunnelling and Underground Space Technology, 55, 290-307. https://doi.org/10.1016/j.tust.2015.11.011 DOI: https://doi.org/10.1016/j.tust.2015.11.011
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.