Contenido principal del artículo

El artículo presenta el uso de técnicas cartográficas de scripting para la visualización de mapas topográficos y geomorfológicos por R y GMT. Los mapas temáticos pretenden analizar la región del Perú con un enfoque específico en su geomorfología: pendiente, aspecto, elevación y sombreado realizado en las bibliotecas R «raster» y «tmap». Los materiales integrados incluyen varios conjuntos de datos integrados en la biblioteca R "OpenStreetMap": Stamen, ESRI World Imagery, Bing Maps, National Park Service. La investigación muestra un ejemplo particular del uso de conjuntos de datos de código abierto y herramientas gratuitas disponibles para la educación e investigación en línea a distancia, que se convierte en una tendencia real en la investigación geográfica moderna.

Lemenkova, P. . (2021). Scripting de técnicas cartográficas de R y GMT para el mapeo geomorfológico y topográfico del Perú. Entorno Geográfico, (22), 36–55.

Alcalá, J., Palacios, D., Vázquez, L., & Zamorano, J. J. (2015). Timing of maximum glacial extent and deglaciation from HualcaHualca volcano (southern Peru), obtained with cosmogenic 36Cl. Geophysical Research Abstracts, 17. EGU2015-12930-1.

Alcalá-Reygosa, J., Palacios, D., & Zamorano Orozco, J. J. (2016). Geomorphology of the Ampato volcanic complex (Southern Peru). Journal of Maps, 12(5), 1160–1169.

Bromley, R. M., Hall, B. L., Schaefer, J. M., Winckeler, G., Todd, C. E., & Rademaker, K. M. (2011). Glacier fluctuations in the southern Peruvian Andes during the late-glacial period, constrained with cosmogenic 3He. Journal of Quaternary Science, 26(1), 37–43.

Clapperton, C. M. (1993). Quaternary geology and geomorphology of South America. Amsterdam: Elsevier.

Cobbing, E. (1982). The segmented coastal batholith of Peru; its relationship to volcanocity and metallogenesis. Earth-Science Reviews, 18(3–4), 241–251.

Dornbusch, U. (1998). Current large-scale climatic conditions in Southern Peru and their influence on snowline altitudes. Erdkunde, 52(1), 41–54.

Dornbusch, U. (2002). Pleistocene and present day snowline rise in the Cordillera Ampato, Western Cordillera, Southern Peru (15° 15' - 15°4'S and 73°30' - 72° 15' W). Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 225, 103–126.

Dornbusch, U. (2005). Glacier-rock glacier relationships as climatic indicators during the late Quaternary in the Cordillera Ampato, Western Cordillera of southern Peru. Geological Society, London, Special Publications, 242(1), 75.

Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P., & Hillenbrand, C. (2007). Swath-bathymetric mapping. ANT-XXIII/4 R/V ’Polarstern’. Reports on Polar and Marine Research, 557, 38–45.

Gohl, K., Eagles, G., Udintsev, G., Larter, R. D., Uenzelmann-Neben, G., Schenke, H.-W., Lemenkova, P., Grobys, J., Parsiegla, N., Schlueter, P., Deen. T., Kuhn, G., & Hillenbrand, C.-D. (2006a). Tectonic and sedimentary processes of the West Antarctic margin of the Amundsen Sea embayment and PineIsland Bay. 2nd SCAR Open Science Meeting, 12–14 July, Hobart, Australia.

Gohl, K., Uenzelmann-Neben, G., Eagles, G., Fahl, A., Feigl, T., Grobys, J., Just, J., Leinweber, V., Lensch, N., Mayr, C., Parsiegla, N., Rackebrandt, N., Schlüter, P., Suckro, S., Zimmermann, K., Gauger, S., Bohlmann, H., Netzeband, G., & Lemenkova, P. (2006b). Crustal and Sedimentary Structures and Geodynamic Evolution of the West Antarctic Continental Margin and Pine Island Bay. Expeditionsprogramm Nr. 75 ANT XXIII/4 ANT XXIII/5, 11–12.

Hall, S. R., Farber, D. L., Ramage, J. M., Rodbell, D. T., Smith, J. A., Mark, B. G., & Kassel, C. (2009). Geochronology of quaternary glaciations from the tropical Cordillera Huayhuash, Peru. Quaternary Science Reviews, 28,(25-26) 2991–3009.

Kelly, M. A., Lowell, T. V., Applegate, P. J., Smith, C. A., Phillips, F. M., & Hudson, A. M. (2012). Late glacial fluctuations of Quelccaya Ice Cap, southeastern Peru. Geology, 40(11), 991–994.

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2017). Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 2(16), 449–458.

Klaučo, M., Gregorová, B., Stankov, U., Marković, V., & Lemenkova, P. (2013). Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Central European Journal of Geosciences, 5(1), 28–42.

Kull, C., & Grosjean, M. (2000). Late Pleistocene climate conditions in the north Chilean Andes drawn from a climate–glacier model. Journal of Glaciology, 46(155), 622–632.

Kuhn, G., Hass, C., Kober, M., Petitat, M., Feigl, T., Hillenbrand, C. D., Kruger, S., Forwick, M., Gauger, S., & Lemenkova, P. (2006). The response of quaternary climatic cycles in the south-east pacific: development of the opal belt and dynamics behavior of the west antarctic ice sheet. Expeditionsprogramm (75) ANT XXIII/4, AWI, Bremerhaven, Germany.

Lemenkov, V., & Lemenkova, P. (2021). Using TeX Markup Language for 3D and 2D Geological Plotting. Foundations of Computing and Decision Sciences, 46(3), 43–69.

Lemenkova, P., Promper, C., & Glade, T. (2012). Economic Assessment of Landslide Risk for the Waidhofen a.d. Ybbs Region, Alpine Foreland, Lower Austria. Protecting Society through Improved Understanding. 11th International Symposium on Landslides & the 2nd North American Symposium on Landslides & Engineered Slopes (NASL), June 2–8, 2012. Canada, Banff, 279–285.

Lemenkova, P. (2019a). GMT Based Comparative Analysis and Geomorphological Mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean. Geographia Technica, 14(2), 39–48.

Lemenkova, P. (2019b). Automatic Data Processing for Visualising Yap and Palau Trenches by Generic Mapping Tools. Cartographic Letters, 27(2), 72–89.

Lemenkova, P. (2019c). Statistical Analysis of the Mariana Trench Geomorphology Using R Programming Language. Geodesy and Cartography, 45(2), 57–84.

Lemenkova, P. (2019d). Testing Linear Regressions by StatsModel Library of Python for Oceanological Data Interpretation. Aquatic Sciences and Engineering, 34(2), 51–60.

Lemenkova, P. (2019e). AWK and GNU Octave Programming Languages Integrated with Generic Mapping Tools for Geomorphological Analysis. GeoScience Engineering, 65(4), 1–22.

Lemenkova, P. (2019f). Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181–194.

Lemenkova, P. (2020a). Variations in the bathymetry and bottom morphology of the Izu-Bonin Trench modelled by GMT. Bulletin of Geography. Physical Geography Series, 18(1), 41–60.

Lemenkova, P. (2020b). GEBCO Gridded Bathymetric Datasets for Mapping Japan Trench Geomorphology by Means of GMT Scripting Toolset. Geodesy and Cartography, 46(3), 98–112.

Lemenkova, P. (2020c). Geomorphology of the Puerto Rico Trench and Cayman Trough in the Context of the Geological Evolution of the Caribbean Sea. Annales Universitatis Mariae Curie-Sklodowska, sectio B – Geographia, Geologia, Mineralogia et Petrographia, 75, 115–141. DOI: 10.17951/b.2020.75.115-141

Lemenkova, P. (2020d). The geomorphology of the Makran Trench in the context of the geological and geophysical settings of the Arabian Sea. Geology, Geophysics and Environment, 46(3), 205–222.

Lemenkova, P. (2020e). Using GMT for 2D and 3D Modeling of the Ryukyu Trench Topography, Pacific Ocean. Miscellanea Geographica, 25(3), 1–13.

Lemenkova, P. (2020f). GRASS GIS for topographic and geophysical mapping of the Peru-Chile Trench. Forum Geografic 19(2),143–157.

Lemenkova, P. (2020g). Scripting cartographic methods of GMT for mapping the New Britain and San Cristobal Trenches, Solomon Sea, Papua New Guinea. Revista da Casa da Geografia de Sobral, 22(3), 122–142.

Rose, J. (1996). Quaternary Geology and Geomorphology of South America. Journal of Quaternary Science, 11(5), 432–433.<432::AID-JQS246>3.0.CO;2-R

R Core Team (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Recuperado de

RStudio Team (2017). RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA. URL:

Schenke, H. W., & Lemenkova, P. (2008). Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, (81), 16–21.

Schulz, G. (1994). Die pleistozane Vergletscherung der Anden Perus und Boliviens abgeleitet aus Formen einer flachendeckend-integrativen Hohenlinienanalyse. Berliner Geographischen Abhandlungen, 58, 156 pp.

Suetova, I., Ushakova, L., & Lemenkova, P. (2005a). Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, (4), 138–142.

Suetova, I., Ushakova, L., & Lemenkova, P. (2005b). Geoecological Mapping of the Barents Sea Using GIS. International Cartographic Conference. July 9–16, 2005, La Coruña, Spain.

Tennekes, M. (2018). tmap: Thematic Maps in R. Journal of Statistical Software, 84(6), 1–39. Recuperado de

Ubeda, J. (2013). Cronologías glaciales del sector NE del nevado Coropuna (Perú): implicaciones geomorfológicas y paleoclimáticas. Boletín De La Asociación De Geógrafos Españoles, 62.

Weibel, M., Frangipane-Gysel, M., & Hunziker, J. (1978). Ein Beitrag zur Vulkanologie Süd-Perus. Geol Rundsch (67), 243–252.

Wessel, P., & Smith, W. H. F. (1996). A Global Self-consistent, Hierarchical, High-resolution Shoreline Database. Journal of Geophysical Research, 101(B4), 8741–8743. DOI:10.1029/96JB00104

Wessel, P., & Smith, W. H. F. (1995). New version of the Generic Mapping Tools released. Eos Transactions of the American Geophysical Union, 76(33), 329–329.