Influencia antrópica en el patrón espacial de la vegetación Leopardo (Leopard Bush) en La Guajira Colombiana
Contenido principal del artículo
Una revisión reciente de la estructura de los ecosistemas de las zonas áridas apoya la idea de que la vegetación está conformada comúnmente por dos patrones espaciales denominados “arbusto Tigre” y “arbusto Leopardo”. Se plantea que la distribución y la composición del patrón Leopardo es originada por la interacción entre aspectos antrópicos y biofísicos. La presente investigación tiene como objetivo investigar el patrón Leopardo en la península de La Guajira, se implementó un enfoque biofísico que integra tecnologías de SIG y Percepción Remota. Se utilizó información recabada en campo, imágenes de satélite y modelos de elevación digitales para producir mapas de distribución vegetal. El análisis de los nutrientes del suelo mostró cómo varían los valores de N, P, K en los suelos desnudos y en las islas de fertilidad conformadas por la vegetación donde los cactus forman parte del patrón, siendo reportados por primera vez. El patrón Leopardo es el resultado de unas características específicas que limitan las formas de vida vegetales, al limitarse el desarrollo a solo ciertas especies resistentes, éstas conforman comunidades y a su vez generan estrategias para optimizar los recursos disponibles. En el patrón Leopardo de la Guajira los suelos compactados y los espacios fragmentados por la influencia antrópica mostraron ser uno de los principales factores en la heterogeneidad resultante.
Aguiar, M., & Sala, O. E. (1999). Patch structure, dynamics and implications for the functioning of arid ecosystems. Trends Ecol Evol, 14(7), 273-277. https://doi.org/10.1016/S0169-5347(99)01612-2
Arnold, G., Arnold, M., & Dudzinsky, M. (1978). Ethology of free-ranging domestic animals. In E. S. P. Co. (Ed.), (pp. 210).
Baek, H., Jung, D. I., & Wang, Z.-w. (2013). Pattern formation in a semi-ratio-dependent predator-prey system with diffusion. Discrete Dynamics in Nature and Society, 2013.
Barbier, N., Couteron, P., Lefever, R., Deblauwe, V., & Lejeune, O. (2008). Spatial decoupling of facilitation and competition at the origin of gapped vegetation patterns. Ecology, 89(6), 1521-1531.
Bestelmeyer, B., Trujillo, D., Tugel, A., & Havstad, K. (2006). A multi-scale classification of vegetation dynamics in arid lands: What is the right scale for models, monitoring, and restoration? Journal of Arid Environments, 65(2), 296-318.
Blyth, E., & Harding, R. (1995). Application of aggregation models to surface heat flux from the Sahelian tiger bush. Agricultural and Forest Meteorology, 72(3), 213-235.
Boaler, S., & Hodge, C. (1962). Vegetation stripes in Somaliland. The Journal of Ecology, 465-474.
Bordeu, I., Clerc, M. G., Couteron, P., Lefever, R., & Tlidi, M. (2016). Self-Replication of Localized Vegetation Patches in Scarce Environments [Article]. Scientific Reports, 6, 33703. https://doi.org/10.1038/srep33703
Borgogno, F., D'Odorico, P., Laio, F., & Ridolfi, L. (2009). Mathematical models of vegetation pattern formation in ecohydrology. Reviews of geophysics, 47(1), RG1005. https://doi.org/10.1029/2007RG000256
Borthagaray, A. I., Fuentes, M. A., & Marquet, P. A. (2010). Vegetation pattern formation in a fog-dependent ecosystem. Journal of theoretical biology, 265(1), 18-26. http://www.sciencedirect.com/science/article/pii/S0022519310002031
Breman, H., & Wit, C. T. d. (1983). Rangeland productivity and exploitation in the Sahel. Science, 221(4618), 1341-1347. https://doi.org/10.1126/science.221.4618.1341
Chaiya, I., Wollkind, D. J., Cangelosi, R. A., Kealy-Dichone, B. J., & Rattanakul, C. (2015). Vegetative Rhombic Pattern Formation Driven by Root Suction for an Interaction-Diffusion Plant-Ground Water Model System in an Arid Flat Environment. American Journal of Plant Sciences, 6(08), 1278.
Cheng, Y., Stieglitz, M., Engel, V., & Turk, G. (2010). Parallel Vegetation Stripe Formation Through Hydrologic Interactions. AGU Fall Meeting Abstracts,
Couteron, P., Anthelme, F., Clerc, M., Escaff, D., Fernandez-Oto, C., & Tlidi, M. (2014). Plant clonal morphologies and spatial patterns as self-organized responses to resource-limited environments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 372(2027). https://doi.org/10.1098/rsta.2014.0102
Couteron, P., & Lejeune, O. (2001). Periodic spotted patterns in semi‐arid vegetation explained by a propagation‐inhibition model. Journal of Ecology, 89(4), 616-628. https://doi.org/10.1046/j.0022-0477.2001.00588.x
Deblauwe, V., Couteron, P., Lejeune, O., Bogaert, J., & Barbier, N. (2011). Environmental modulation of self‐organized periodic vegetation patterns in Sudan. Ecography, 34(6), 990-1001.
Dunkerley, D. (1997). Banded vegetation: survival under drought and grazing pressure based on a simple cellular automaton model. Journal of Arid Environments, 35(3), 419-428.
Dunkerley, D. L., & Brown, K. J. (1995). Runoff and runon areas in a patterned chenopod shrubland, arid western New South Wales, Australia: characteristics and origin. Journal of Arid Environments, 30(1), 41-55. https://doi.org/https://doi.org/10.1016/S0140-1963(95)80037-9
Elwell, H. A., & Stocking, M. A. (1976). Vegetal cover to estimate soil erosion hazard in Rhodesia. Geoderma, 15(1), 61-70. https://doi.org/https://doi.org/10.1016/0016-7061(76)90071-9
Fuentes, J., Varga, D., y Boada, M. (2016). Distribución del patrón espacial tipo leopardo en regiones áridas y semiáridas del mundo. Boletín de la Asociación de Geógrafos Españoles, 71, 59-72. https://doi.org/10.21138/bage.2274
Fuentes, J., Varga, D., & Pintó, J. (2018). The Use of High-Resolution Historical Images to Analyse the Leopard Pattern in the Arid Area of La Alta Guajira, Colombia. Geosciences, 8(10), 366. http://www.mdpi.com/2076-3263/8/10/366
Fuentes, J. E., Moya, F. D., & Montoya, O. D. (2020). Method for Estimating Solar Energy Potential Based on Photogrammetry from Unmanned Aerial Vehicles. Electronics, 9(12). https://doi.org/10.3390/electronics9122144
Garcia-Moya, E., & McKell, C. M. (1970). Contribution of shrubs to the nitrogen economy of a desert-wash plant community. Ecology, 81-88.
Gilad, E., von Hardenberg, J., Provenzale, A., Shachak, M., & Meron, E. (2004). Ecosystem engineers: from pattern formation to habitat creation. Physical Review Letters, 93(9), 098105. http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.93.098105
Guo, T., Tan, Q., & Xiong, J. (2011). Analysis of spatial patterns in a vegetation model. Applied Mathematics and Computation, 217(21), 8303-8310. http://www.sciencedirect.com/science/article/pii/S0096300311003511
HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H. H., & de Kroon, H. (2001). Vegetation pattern formation in semi‐arid grazing systems. Ecology, 82(1), 50-61.
IDEAM. (2005). Atlas Climático de Colombia. Instituto de Hidrología, Meteorología y Estudios Ambientales, Bogotá.
Kefi, S., Rietkerk, M., & Katul, G. G. (2008). Vegetation pattern shift as a result of rising atmospheric CO 2 in arid ecosystems. Theoretical population biology, 74(4), 332-344. http://www.sciencedirect.com/science/article/pii/S0040580908001056
Kellner, K., & Bosch, O. (1992). Influence of patch formation in determining the stocking rate for southern African grasslands. Journal of Arid Environments, 22(1), 99-105.
Kelly, R. D., & Walker, B. H. (1976). The Effects of Different Forms of Land Use on the Ecology of a Semi-Arid Region in South-Eastern Rhodesia. Journal of Ecology, 64(2), 553-576. https://doi.org/10.2307/2258773
Lefever, R., & Lejeune, O. (1997). On the origin of tiger bush. Bulletin of Mathematical biology, 59(2), 263-294. http://link.springer.com/article/10.1007%2FBF02462004
Lejeune, O., Couteron, P., & Lefever, R. (1999). Short range co-operativity competing with long range inhibition explains vegetation patterns. Acta Oecologica, 20(3), 171-183. http://www.sciencedirect.com/science/article/pii/S1146609X99800307
Liu, Q.-X., Jin, Z., & Li, B.-L. (2008). Numerical investigation of spatial pattern in a vegetation model with feedback function. Journal of theoretical biology, 254(2), 350-360. http://www.sciencedirect.com/science/article/pii/S0022519308002476
MacArthur, R. H. (1967). The theory of island biogeography (Vol. 1). Princeton University Press.
Macfadyen, W. (1950). Vegetation patterns in the semi-desert plains of British Somaliland. The Geographical Journal, 116(4/6), 199-211.
Manor, A., & Shnerb, N. M. (2008). Facilitation, competition, and vegetation patchiness: from scale free distribution to patterns. Journal of theoretical biology, 253(4), 838-842. http://www.sciencedirect.com/science/article/pii/S0022519308001914
McGrath, G. S., Paik, K., & Hinz, C. (2012). Microtopography alters self‐organized vegetation patterns in water‐limited ecosystems. Journal of Geophysical Research: Biogeosciences, 117(G3).
Meigs, P. (1953). World Distribution of Arid and Semi-arid Hot Climates. Paris: UNESCO
Menaut, J.-C., Walker, B., Tongway, D. J., Valentin, C., & Seghieri, J. (2001). Banded vegetation patterning in arid and semiarid environments: ecological processes and consequences for management (Vol. 149). Springer Science & Business Media.
Rietkerk, M., Ketner, P., Burger, J., Hoorens, B., & Olff, H. (2000). Multiscale soil and vegetation patchiness along a gradient of herbivore impact in a semi-arid grazing system in West Africa. Plant Ecology, 148(2), 207-224.
Rietkerk, M., & Van de Koppel, J. (2008). Regular pattern formation in real ecosystems. Trends in Ecology & Evolution, 23(3), 169-175.
Saco, P., Willgoose, G., & Hancock, G. (2007). Eco-geomorphology of banded vegetation patterns in arid and semi-arid regions. Hydrology and Earth System Sciences, 11(6), 1717-1730. https://doi.org/doi:10.1029/2003JF000028
Sala, O. E., & Aguiar, M. R. (1996). Origin, maintenance, and ecosystem effect of vegetation patches in arid lands. Proceedings Vth International Rangeland Congress, Salt Lake City, Utah.
Schlesinger, W. H., & Pilmanis, A. M. (1998). Plant-soil Interactions in Deserts. Biogeochemistry, 42(1/2), 169-187. https://doi.org/10.1023/a:1005939924434
Schlesinger, W. H., Reynolds, J. F., Cunningham, G. L., Huenneke, L., Jarrell, W., Virginia, R., & Whitford, W. (1990). Biological feedbacks in global desertification. Science, 247(4946), 1043-1048. http://science.sciencemag.org/content/247/4946/1043.long
Slatyer, R. O. (1959, 31 July 1959). Methodology of a water balance study conducted on a desert woodland (acacia aneura f. muell.) community in central Australia Symposium on Plant-Water Relationships in Arid and Semi-arid Conditions, Madrid.
Stroosnijder, L. (1996). Modelling the effect of grazing on infiltration, runoff and primary production in the Sahel. Ecological modelling, 92(1), 79-88.
Tlidi, M., Bordeu, I., Clerc, M. G., & Escaff, D. (2018). Extended patchy ecosystems may increase their total biomass through self-replication. Ecological Indicators, 94, 534-543. https://doi.org/https://doi.org/10.1016/j.ecolind.2018.02.009
Tongway, D. J., & Ludwig, J. A. (1990). Vegetation and soil patterning in semi-arid mulga lands of Eastern Australia. Austral Ecology, 15(1), 23-34. https://doi.org/10.1111/j.1442-9993.1990.tb01017.x
Ursino, N. (2005). The influence of soil properties on the formation of unstable vegetation patterns on hillsides of semiarid catchments. Advances in water resources, 28(9), 956-963. http://www.sciencedirect.com/science/article/pii/S0309170805000825
Valentin, C., & d'Herbès, J.-M. (1999). Niger tiger bush as a natural water harvesting system. Catena, 37(1), 231-256.
Wickens, G. E., & Collier, F. W. (1971). Some vegetation patterns in the Republic of the Sudan. Geoderma, 6(1), 43-59. https://doi.org/http://dx.doi.org/10.1016/0016-7061(71)90050-4
Wilson, J. P., Gallant, J.C. (2000). Terrain analysis: principles and applications. John Wiley & Sons.
Worrall, G. (1959). The Butana grass patterns. Journal of Soil Science, 10(1), 34-53.
Yetemen, O., Istanbulluoglu, E., & Vivoni, E. R. (2010). The implications of geology, soils, and vegetation on landscape morphology: Inferences from semi-arid basins with complex vegetation patterns in Central New Mexico, USA. Geomorphology, 116(3-4), 246-263. https://doi.org/10.1016/j.geomorph.2009.11.026.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.