Ondas Ultrassônicas para Controle de Algas em Lago de Represa: Um Estudo Abrangente da Represa Mamloo
Conteúdo do artigo principal
Reservatórios de barragens, fundamentais para o gerenciamento da qualidade da água (QA) dos rios, frequentemente enfrentam desafios devido a florescimento de algas causado pelo enriquecimento de nutrientes. Este estudo investiga o uso de ondas ultrassônicas (OU) para controlar o crescimento de algas na Represa de Mamloo. O objetivo é avaliar a eficácia dessa técnica e contribuir para estratégias aprimoradas de gestão da água.
O estudo foi realizado no reservatório da Represa de Mamloo, com amostragens em cinco pontos designados. A QA foi avaliada com o uso de um dispositivo CTD (Condutividade, Temperatura e Profundidade) para medir a temperatura, oxigênio dissolvido e clorofila A, além de um espectrofotômetro DR 6000 para analisar os níveis de fósforo e nitrato. Dispositivos ultrassônicos da LG Sonic foram instalados para avaliar seu efeito no controle de algas. Amostras de fitoplâncton foram coletadas da superfície até 2 metros de profundidade, preservadas com solução de Lugol e formalina, e analisadas ao microscópio. Essa abordagem teve como objetivo determinar o impacto das OU no crescimento de algas e na QA.
O estudo revelou que a aplicação de OU no reservatório de Mamloo resultou em uma redução significativa das populações de fitoplâncton, incluindo algas verdes, diatomáceas e cianobactérias. Os níveis de clorofila A apresentaram flutuações consideráveis, com tendência geral de queda. Além disso, o tratamento ultrassônico melhorou a QA ao reduzir a demanda química de oxigênio (DQO) e o fósforo total (PT), indicando a eficácia da tecnologia ultrassônica no controle de algas e na melhoria da QA.
As OU reduziram significativamente o fitoplâncton no estudo piloto, demonstrando potencial para o controle de algas em pequenos reservatórios. São necessárias pesquisas adicionais para avaliar sua eficácia em maior escala.
- ondas ultrassônicas
- controle de algas
- fitoplâncton
- qualidade da água
- represa de Mamloo
Bibak, M. & Hosseini, S. (2013). Review ways to control harmful algal bloom (HAB).World Journal of Fish and Marine Sciences, 5(1), 42–44. https://tinyurl.com/5n6avx8h
Chen, G., Ding, X. & Zhou, W. (2020). Study on ultrasonic treatment for degradation of Microcystins (MCs). Ultrasonics sonochemistry, 63, 104900. https://doi.org/10.1016/j.ultsonch.2019.104900
Dokulil, M. & Teubner, K. (2010). Eutrophication and Climate Change: Present Situation and Future Scenarios. In Ansari, A., Gill, S., Lanza, G., Rast, W. (Eds.), Eutrophication: causes, consequences and control (pp. 1–16). Springer. https://doi.org/10.1007/978-90-481-9625-8_1
Duan, Z., Tan, X. & Li, N. (2017). Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient. Water science and technology, 76(8), 2085–2094. https://doi.org/10.2166/wst.2017.376
Fukushima, T., Matsushita, B., Subehi, L., Setiawan, F. & Wibowo, H. (2017). Will hypolimnetic waters become anoxic in all deep tropical lakes? Scientific Reports, 7(1), 45320. https://doi.org/10.1038/srep45320
Hach. (2015). Nitrate, UV Screening-Method 10049. In Water analysis handbook (8th ed.). https://tinyurl.com/4x8fup96
Hallegraeff, G., Anderson, D., Belin, C., Bottein, M., Bresnan, E., Chinain, M., Enevoldsen, H., Iwataki, M., Karlson, B., McKenzie, C., Sunesen, I., Pitcher, G., Provoost, P., Richardson, A., Schweibold, L., Tester, P., Trainer, V., Yñiguez, A. & Zingone, A. (2021). Perceived global increase in algal blooms is attributable to intensified monitoring and emerging bloom impacts. Communications Earth & Environment, 2, 117. https://doi.org/10.1038/s43247-021-00178-8
Heng, L., Jun, N., Wen-jie, H. & Guibai, L. (2009). Algae removal by ultrasonic irradiation–coagulation. Desalination, 239(1–3), 191–197. https://doi.org/10.1016/j.desal.2007.12.035
Honda, A., Sugino, F. & Yamamoto, K. (2021). Inactivation of Algae and Plankton by Ultrasonic Cavitation. Sustainability, 13(12), 6769. https://doi.org/10.3390/su13126769
Huang, H., Wu, G., Sheng, C., Wu, J., Li, D. & Wang, H. (2020). Improved Cyanobacteria Removal from Harmful Algae Blooms by Two-Cycle, Low-Frequency, Low-Density, and Short-Duration Ultrasonic Radiation. Water, 12(9), 2431. https://doi.org/10.3390/w12092431
Jiang, M. & Nakano, S. I. (2022). The crucial influence of trophic status on the relative requirement of nitrogen to phosphorus for phytoplankton growth. Water research, 222, 118868. https://doi.org/10.1016/j.watres.2022.118868
Jorgensen, S., Loffler, H., Rast, W. & Straskraba, M. (2013). Lake and Reservoir Management. Elsevier.
Kiefer, D., Chamberlin, W. & Booth, C. (1989). Natural fluorescence of chlorophyll a: Relationship to photosynthesis and chlorophyll concentration in the western South Pacific gyre. Limnology and Oceanography, 34(5), 868–881. https://doi.org/10.4319/lo.1989.34.5.0868
Kim, S., Kim, I., Park, S-H., Hwangbo, M. & Hwangbo, S. (2024). Novel ultrasonic technology for advanced oxidation processes of water treatment. RSC advances, 14(17), 11939–11948. https://doi.org/10.1039/d4ra01665c
Kuefner, W., Hofmann, A., Ossyssek, S., Dubois, N., Geist, J. & Raeder, U. (2020). Composition of highly diverse diatom community shifts as response to climate change: A down-core study of 23 central European mountain lakes. Ecological Indicators, 117, 106590. https://doi.org/10.1016/j.ecolind.2020.106590
Lai, Y., Yang, C., Hsieh, C., Wu, C. & Kao, C. (2011). Evaluation of non-point source pollution and river water quality using a multimedia two-model system. Journal of hydrology, 409(3-4), 583–595. https://doi.org/10.1016/j.jhydrol.2011.08.040
LG Sonic. (2025a). Rethinking Algae Control in Drinking Water Systems: Sustainable Alternatives to Chlorine. https://tinyurl.com/4bdv9bty
LG Sonic. (2025b). How LG Sonic ultrasound technology controls algae. https://tinyurl.com/258b2suv
LG Sonic. (2025c). Ultrasound for algal bloom control: background, research and effects. https://tinyurl.com/5n8uhkz8
LG Sonic. (2025d). Rethinking Algae Control in Drinking Water Systems: Sustainable Alternatives to Chlorine. https://tinyurl.com/4bdv9bty
Li, J., Song, C., Su, Y., Long, H., Huang, T., Yeabah, T. & Wu, W. (2013). A study on influential factors of high-phosphorus wastewater treated by electrocoagulation–ultrasound. Environmental Science and Pollution Research, 20, 5397–5404. https://doi.org/10.1007/s11356-013-1537-9
Ma, W-X., Huang, T-L. & Li, X. (2015). Study of the application of the water-lifting aerators to improve the water quality of a stratified, eutrophicated reservoir. Ecological Engineering, 83, 281–290. https://doi.org/10.1016/j.ecoleng.2015.06.022
MacKinnon, M. & Herbert, B. (1996). Temperature, Dissolved Oxygen and Stratification in a Tropical Reservoir, Lake Tinaroo, Northern Queensland, Australia. Marine and Freshwater Research, 47(7), 937–949. https://doi.org/10.1071/MF9960937
Mellard, J., Yoshiyama, K., Litchman, E. & Klausmeier, C. (2011). The vertical distribution of phytoplankton in stratified water columns. Journal of Theoretical Biology, 269(1), 16–30. https://doi.org/10.1016/j.jtbi.2010.09.041
Mignot, J., Lazar, A. & Lacarra, M. (2012). On the formation of barrier layers and associated vertical temperature inversions: A focus on the northwestern tropical Atlantic. Journal of Geophysical Research: Oceans, 117, C02010. https://doi.org/10.1029%2F2011JC007435
Naderi, H., Javid, A., Borgheic, S. & Eslamizadehd, M. (2022). An evaluation of seasonal and spatial variation of water quality parameters of the Mamloo Reservoir in Iran by multivariable analysis. Research Square. https://doi.org/10.21203/rs.3.rs-1912901/v1
Nazariha, M., Danaei, E., Hashemi, S. & Doustdar, A. (17–21 May 2009). Prediction of thermal stratification in proposed Bakhtyari reservoir with CE-QUAL-W2 [Conference session]. World Environmental and Water Resources Congress, Kansas City, Missouri, United States.
Noges, P., Poikane, S., Koiv, T. & Noges, T. (2010). Effect of chlorophyll sampling design on water quality assessment in thermally stratified lakes. Hydrobiologia, 649, 157–170. https://doi.org/10.1007/s10750-010-0237-4
Ortenberg, E. & Telsch, B. (2003). Taste and odour problems in potable water. In Duncan M., Nigel, H. (Eds.), Handbook of Water and Wastewater Microbiology (pp. 777–793). Elsevier.
Park, J., Church, J., Son, Y., Kim, K.-T. & Lee, W. (2017). Recent advances in ultrasonic treatment: challenges and field applications for controlling harmful algal blooms (HABs). Ultrasonics sonochemistry, 38, 326–334. https://doi.org/10.1016/j.ultsonch.2017.03.003
Rangel‐Peraza, J., Obregon, O., Nelson, J., Williams, G., De Anda, J., González‐Farías, F., & Miller, J. (2012). Modelling approach for characterizing thermal stratification and assessing water quality for a large tropical reservoir. Lakes & Reservoirs, 17(2), 119–129. https://doi.org/10.1111/j.1440-1770.2012.00503.x
Sabeti, R., Jamali, S. & Jamali, H. (2017). Simulation of Thermal Stratification and Salinity Using the Ce-Qual-W2 Model (Case Study: Mamloo Dam). Engineering, Technology & Applied Science Research, 7(3), 1664–1669. https://doi.org/10.48084/etasr.1062
Sathe, P., Myint, M., Dobretsov, S. & Dutta, J. (2016). Removal and regrowth inhibition of microalgae using visible light photocatalysis with ZnO nanorods: A green technology. Separation and Purification Technology, 162, 61–67. https://doi.org/10.1016/j.seppur.2016.02.007
Schindler, D. (2006). Recent advances in the understanding and management of eutrophication. Limnology and oceanography, 51(1part2), 356–363. https://doi.org/10.4319/lo.2006.51.1_part_2.0356
Schwefel, R., Gaudard, A., Wüest, A. & Bouffard, D. (2016). Effects of climate change on deepwater oxygen and winter mixing in a deep lake (Lake Geneva): Comparing observational findings and modeling. Water Resources Research, 52(11), 8811–8826. https://doi.org/10.1002/2016WR019194
Smith, J., Wolny, J., Stocker, M. & Pachepsky, Y. (2024). Effects of Sampling Time and Depth on Phytoplankton Metrics in Agricultural Irrigation Ponds. Environments, 11(4), 74. https://doi.org/10.3390/environments11040074
Vongthanasunthorn, N., Sasaki, H., Koga, K., Sakata, M. & Tabira, K. (2019). Impact of Inflow Loading and Algal Productivity on Water Quality in the Chikugo Barrage Reservoir, Japan. Thai Environmental Engineering Journal, 33(2), 1–11. https://tinyurl.com/vr2rtd93
Wang, X., Hao, F., Cheng, H., Yang, S., Zhang, X. & Bu, Q. (2011). Estimating non-point source pollutant loads for the large-scale basin of the Yangtze River in China. Environmental Earth Sciences, 63, 1079–1092. https://doi.org/10.1007/s12665-010-0783-0
Wang, J., Ju, J., Daut, G., Huang, L., Wang, Y., Ma, Q., Haberzettl, T., Baade, J., Mäusbacher, R. & Zhu, L. (27 April–2 May 2014). Spatial and seasonal variability of thermal stratification in Lake Nam Co, central Tibetan Plateau [Conference session]. EGU General Assembly, Vienna, Austria.
Wang, J., Wang, Z., Vieira, C., Wolfson, J., Pingtian, G. & Huang, S. (2019). Review on the treatment of organic pollutants in water by ultrasonic technology. Ultrasonics sonochemistry, 55, 273–278. https://doi.org/10.1016/j.ultsonch.2019.01.017
Wang, J., Bouwman, A., Liu, X., Beusen, A., Van Dingenen, R., Dentener, F., Yao, Y., Glibert, P., Ran, X., Yao, Q., Xu, B., Yu, R., Middelburg, J. & Yu, Z. (2021). Harmful Algal Blooms in Chinese Coastal Waters Will Persist Due to Perturbed Nutrient Ratios. Environmental Science & Technology Letters, 8(3), 276–284. https://doi.org/10.1021/acs.estlett.1c00012
Wang, Y., Zhu, Y., Wang, K., Tan, Y., Bing, X., Jiang, J., Fang, W., Chen, L. & Liao, H. (2024). Principles and research progress of physical prevention and control technologies for algae in eutrophic water. IScience, 27(6), 109990. https://doi.org/10.1016/j.isci.2024.109990
Wu, X., Joyce, E. & Mason, T. (2011). The effects of ultrasound on cyanobacteria. Harmful Algae, 10(6), 738–743. https://doi.org/10.1016/j.hal.2011.06.005
Yang, H., He, K., Lu, D., Wang, J., Xu, D., Jin, Z., Yang, M. & Chen, J. (2020). Removal of phosphate by aluminum-modified clay in a heavily polluted lake, Southwest China: Effectiveness and ecological risks. Science of The Total Environment, 705, 135850. https://doi.org/10.1016/j.scitotenv.2019.135850
Zhang, Y., Wu, Z., Liu, M., He, J., Shi, K., Zhou, Y., Wang, M. & Liu, X. (2015). Dissolved oxygen stratification and response to thermal structure and long-term climate change in a large and deep subtropical reservoir (Lake Qiandaohu, China). Water Research, 75, 249–258. https://doi.org/10.1016/j.watres.2015.02.052
Zhao, H-D., Kao, S-J., Zhai, W-D., Zang, K-P., Zheng, N., Xu, X-M., Cheng, H. & Wang, J-Y. (2017). Effects of stratification, organic matter remineralization and bathymetry on summertime oxygen distribution in the Bohai Sea, China. Continental Shelf Research, 134, 15–25. https://doi.org/10.1016/j.csr.2016.12.004
Zohdi, E. & Abbaspour, M. (2019). Harmful algal blooms (red tide): a review of causes, impacts and approaches to monitoring and prediction. International Journal of Environmental Science and Technology, 16(3), 1789–1806. https://doi.org/10.1007/s13762-018-2108-x
Downloads

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.