Inundation scenarios of sea level rise due to climate change for Coco, Tamarindo and Samara Beaches, Costa Rica
Main Article Content
Sea level rise is analyzed based on the average high tide level for the North Pacific region of Costa Rica. This study was carried out based on models, observations and measurements made in the field, which present a sea level and its respective rise for four scenarios according to the following years: 2030, 2050, 2070 and 2100. Real scenarios are elaborated to simulate the behavior of the sea level in the next 100 years for the areas of Playas del Coco, Tamarindo and Samara. Astronomical tide levels are studied from tidal predictions. The sea level rise in the next few years due to global warming is according to the scenarios of Nerem et al., (2018) around 3 mm per year for the Pacific Coast in general and is used as a basis to create the different combinations and generate the tidal levels represented in this article. The results show the levels of flooding for each of the years for the study areas and indicate the communities that could be flooded by the year 2100 but happening increasingly in the rest of the years. This study aims to alert government institutions to these scenarios so that they can make appropriate decisions in the face of impending sea level change. Sea level combinations are proposed, so that other components not included in this study, such as tsunamis, can be simulated as well, and help in decision-making in the face of these possible events
- tidal level
- scenarios
- climate change
- models
- topography
- bathymetry
Bamber, J.L, & Aspinall W.P. (2013). An expert judgement assessment of future sea level rise from the ice sheets. Nature Climate Change, 3(4), 424–427. https://doi.org/10.1038/nclimate1778
Bedia, J. (2004). Creación de un modelo digital de elevación para la predicción de futuros escenarios de inundación en el estuario del Río Loughor (Sur de Gales). Proyecto fin de carrera Bachelor (Honours) Environmental Science Wolverhampton University, School of Applied Sciences.
Carson, M., Köhl, A., Stammer, D., Slagen, A., Katsman, C., Van de Wal, R., Church, J, & White, N. (2016). Coastal sea level changes, observed and projected during the 20th and 21st century. Climatic Change, 134, 269–281. https://doi.org/10.1007/s10584-015-1520-1
Church, J., Aarup, T., Woodworth, P., Wilson, W., Nicholls, R., Rayner, R., Lambeck, K., Mitchum, G., Steffen, K., Cazenave, A., Blewitt, G., Mitrovica, J, & Lowe, J. (2010). Sea-Level Rise and Variability: Synthesis and Outlook for the Future. In J. Church, P. Woodworth, T. Aarup & W. Wilson (Eds.), Understanding Sea-Level Rise and Variability (pp. 402-419). Wiley-Blackwell. https://doi.org/10.1002/9781444323276.ch13
Diaz, J. (1999). Determinación de las zonas de riesgo ante un ascenso del nivel del mar: Punta Morales-Tárcoles (Informe Final N° 59). MINAE-IMN.
Dieng, H., Cazenave, A., Meyssignac, B, & Ablain, M. (2017). New estimate of the current rate of sea level rise from a sea level budget approach. Geophysical Research Letters, 44(08), 3744-3751. https://doi.org/10.1002/2017GL073308
Domingues, C., Church, J., White, N., Gleckler, P., Wijffels, S., Barker, P, & Dunn, J. (2008). Improved estimates of upper-ocean warming and multidecadal sea-level rise. Nature, (453), 1090-1093. https://doi.org/10.1038/nature07080
Grupo Intergubernamental de Expertos sobre el Cambio Climático. (2007). Cambio climático 2007: Informe de síntesis. (Informe N° 4). IPCC, Rajendra K. Pachauri y Andy Reisinger. https://bit.ly/2RIaAeJ
Grupo Intergubernamental de Expertos sobre el Cambio Climático. (2014). Cambio climático 2014: Informe de síntesis. (Informe N° 5). IPCC, Rajendra K. Pachauri y Leo Meyer. https://bit.ly/2DpxsL1
Lambrechts, C. (2007). Highlights. En: Programa de las Naciones Unidas para el Medio Ambiente (Ed.), Global Outlook for Ice & Snow (pp. 7-18). Programa de las Naciones Unidas para el Medio Ambiente, GRID-Arendal.
Leatherman, S, & Nicholls, R. (1995). Accelerated Sea-Level Rise and Developing Countries: An Overview. Journal of Coastal Research, 14(1), 1-15.
Lizano, M, y Lizano, O. (2010). Creación de escenarios de inundación en la Ciudad de Puntarenas ante el aumento del nivel del mar. InterSedes: Revista de las Sedes Regionales, 11(21), 215-229. https://bit.ly/3toxuMI
Lizano, O. (1997). Las mareas extraordinarias de 1997 en la costa del Pacífico de Costa Rica. Tópicos meteorológicos y oceanográficos, 4(2), 169-179. https://bit.ly/3g1iEIT
Lizano, O. (2006). Algunas características de las mareas en la costa Pacífica y Caribe de Centroamérica. Ciencia y Tecnología, 24(1), 51-64. https://bit.ly/3tm8XaX
Lizano, O. (2009). Corrientes marinas en algunas playas de Costa Rica. En: R. Viales, J. Amador, F. Solano y S. Amador (Eds.), Concepciones y representaciones de la naturaleza y la ciencia en América Latina (pp. 259-272). Editorial Universidad de Costa Rica.
Lizano, O. (2010). Batimetría, modelo de elevación digital y sus aplicaciones. Revista AZIMUTH 10 DIGITAL, 18-21. https://bit.ly/3G97JHL
Lizano, O. (2013). Erosión en las playas de Costa Rica, incluyendo la Isla del Coco. InterSedes, 14(27), 6-27. https://doi.org/10.15517/isucr.v14i27.10405
Lizano, O, y Gutiérrez, A. (2011). Erosión en las costas de Costa Rica, un problema de todos. En Torno a la Prevención, (7), 14-16. https://bit.ly/3EdWeMB
Lizano, O, y Salas, D. (2001). Variaciones geomorfológicas en los últimos 50 años de la Isla Damas, Quepos, Costa Rica. Revista de Biología Tropical, 49(2), 171-177. https://bit.ly/3hCKSdz
National Weather Service. (16 de agosto de 2016). Productos del PTWC por identificadores de AWIPS. National Weather Service. https://bit.ly/3UJlMbp
Nerem, R., Beckley, B., Fasullo, J., Hamlington, B., Masters, D, & Mitchum, G. (2018). Climate change driven accelerated sea-level rise detected in the altimeter era. National Academy of Sciences, 115(9), 2022-2025. https://doi.org/10.1073/pnas.1717312115
Ortiz, M., Fernández, M, y Rojas, W. (2001). Análisis de riesgo de inundación por tsunamis en Puntarenas, Costa Rica. Geos, 21(2), 108-113. https://bit.ly/3hCJAiI
Otto, J., Marshal, S., Overpeck, J., Miller, G, & Hu, A. (2006). Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation. Science, 311(5768), 1751-1753. DOI: 10.1126/science.1120808
Programa de las Naciones Unidas para el Medio Ambiente. (2013). GEO-5 Perspectivas del Medio Ambiente Mundial. Medio ambiente para el futuro que queremos. Programa de las Naciones Unidas para el Medio Ambiente, opciones para América Latina y el Caribe. Programa de las Naciones Unidas para el Medio Ambiente.
Rietbroek, R., Brunnabend, S., Kusche, J., Schröter, J, & Dahle, C. (2016). Revisiting the contemporary sea-level budget on global and regional scales. Proceedings of the National Academy of Sciences, 113(6), 1504–1509. https://doi.org/10.1073/pnas.1519132113
Van der Meulen, F., Witter, J, & Arens, S. (1991). The use of a GIS in assessing the impacts of sea level rise on nature conservation along the Dutch coast: 1990–2090. Landscape Ecology, 6(1-2), 105-113. https://doi.org/10.1007/BF00157750
Wright, L., Syvitski, J, & Nichols, C. (2019). Sea Level Rise: Recent Trends and Future Projections. In: L, Wright., & C, Nichols (Eds.), Tomorrow's Coasts: Complex and Impermanent. Coastal Research Library. Springer, Cham https://doi.org/10.1007/978-3-319-75453-6_3
Downloads

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.