Evolución y tendencias del uso de Aeronaves Pilotadas Remotamente en Brasil (2017-2022) y sus implicaciones para el geoprocesamiento
Contenido principal del artículo
Las aeronaves pilotadas remotamente (RPA, por sus siglas en inglés) revolucionaron la percepción remota, democratizando la adquisición de datos geoespaciales aéreos. En Brasil, las RPAs están reguladas por la Agencia Nacional de Aviación Civil (ANAC) y registradas en sistemas específicos vinculados al Departamento de Control del Espacio Aéreo. Dado que los datos de registro de RPAs están disponibles en internet, existe la oportunidad de analizar cuantitativamente la evolución y el escenario actual del uso de RPAs en Brasil. En este artículo, se analiza la situación actual del uso de RPAs en Brasil, cuantificando registros, fabricantes, modelos y sectores de actividad entre 2017 y 2022. Los datos tabulares se recopilaron del sitio web de la ANAC y del Portal Brasileño de Datos Abiertos, siendo analizados mediante el software Microsoft Excel. Se observó un aumento del 269% en el número total de RPAs registrados, con una concentración significativa en el Distrito Federal, São Paulo, Santa Catarina, Mato Grosso do Sul y Paraná (unidades federativas de Brasil). También se identificó un incremento en el número de registros de RPAs para uso profesional y por parte de empresas, lo que corrobora la idea de una profesionalización progresiva del uso de RPAs en el país. El análisis de los distintos sectores de aplicación permitió una clasificación en cuatro grandes áreas: recreativa, comercial, pública e investigación científica. Al final, se presenta una discusión/reflexión sobre los usos de las RPAs en investigaciones científicas en el campo del geoprocesamiento.
- dron
- VANT
- percepción remota
- cartografía
- levantamiento aéreo
Al-Najjar, H., Kalantar, B., Pradhan, B., Saeidi, V., Halin, A., Ueda, N., & Mansor, S. (2019). Land cover classification from fused DSM and UAV images using convolutional neural networks. Remote Sensing, 11(12), 1461. https://doi.org/10.3390/rs11121461 DOI: https://doi.org/10.3390/rs11121461
Barbosa, B., Araújo e Silva Ferraz, G., Mendes dos Santos, L., Santana, L., Bedin Marin, D., Rossi, G., & Conti, L. (2021). Application of RGB images obtained by UAV in coffee farming. Remote Sensing, 13(12), 2397. https://doi.org/10.3390/rs13122397 DOI: https://doi.org/10.3390/rs13122397
Buffon, E., da Paz, O., & Sampaio, T. (2017). Uso de Veículo Aéreo Não Tripulado (VANT) para mapeamento das vulnerabilidades à inundação urbana: referenciais e bases de aplicação. Revista do Departamento de Geografia, XVII(9), 180-189. https://doi.org/10.11606/rdg.v0ispe.132547 DOI: https://doi.org/10.11606/rdg.v0ispe.132547
Cabral, V., Reis, F., D’Affonseca, F., Lucía, A., dos Santos, C., Veloso, V., Gramani, M., Ogura, A., Lazaretti, A., Vemado, F., Filho, A., dos Santos, C., Lopes, E., Rabaco, L., Giordano, L., & Zarfl, C. (2021). Characterization of a landslide-triggered debris flow at a rainforest-covered mountain region in Brazil. Natural Hazards, 108, 3021-3043. https://doi.org/10.1007/s11069-021-04811-9 DOI: https://doi.org/10.1007/s11069-021-04811-9
Cao, J., Leng, W., Liu, K., Liu, L., He, Z., & Zhu, Y. (2018). Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sensing, 10(1), 89. https://doi.org/10.3390/rs10010089 DOI: https://doi.org/10.3390/rs10010089
Cunha, A., Alixandrini Jr, M., & Fernandes, V. (2020). Avaliação de erosão por imagens de aeronave remotamente pilotada a baixa altura de voo. Geografia (Londrina), 29(1), 191-210. https://doi.org/10.5433/2447-1747.2020v29n1p191 DOI: https://doi.org/10.5433/2447-1747.2020v29n1p191
Escalante, J., Aceres, J., & Porras, H. (2016). Ortomosaicos y modelos digitales de elevación generados a partir de imágenes tomadas con sistemas UAV. Tecnura, 20(50), 119-140. https://tinyurl.com/5n6ckys7
Gonçalves, V. (2021). Metodologia de análise de imagens baseada em objetos geográficos (GEOBIA) utilizando RPAS (drone) com sensor RGB. Estrabão, 2, 41-85. https://doi.org/10.53455/re.v2i.5 DOI: https://doi.org/10.53455/re.v2i.5
Hung, M., Sampaio, T., Schultz, G., Siefert, C., Lange, D., Marangon, F., & dos Santos, I. (2018). Levantamento com veículo aéreo não tripulado para geração de modelo digital do terreno em bacia experimental com vegetação florestal esparsa. Raega-O Espaço Geográfico em Análise, 43, 215-231. https://doi.org/10.5380/raega.v43i0.56621 DOI: https://doi.org/10.5380/raega.v43i0.56621
Luo, M., Tian, Y., Zhang, S., Huang, L., Wang, H., Liu, Z., & Yang, L. (2022). Individual Tree Detection in Coal Mine Afforestation Area Based on Improved Faster RCNN in UAV RGB Images. Remote Sensing, 14(21), 5545. https://doi.org/10.3390/rs14215545 DOI: https://doi.org/10.3390/rs14215545
Machado, H., Henriques, R., & de Souza, R. (2021). Mineração e relevo antropogênico, o exemplo da extração de esteatito em Santa Rita, Ouro Preto, Minas Gerais. Caminhos de Geografia, Uberlândia, 22(81), 166-175. https://doi.org/10.14393/RCG228155361 DOI: https://doi.org/10.14393/RCG228155361
Meivel, S., & Maheswari, S. (2020, 5-7 de junio). Optimization of agricultural smart system using remote sensible NDVI and NIR thermal image analysis techniques [Conferencia]. 2020 International Conference for Emerging Technology (INCET), Belgaum, India. https://doi.org/10.1109/INCET49848.2020.9154185 DOI: https://doi.org/10.1109/INCET49848.2020.9154185
Murugan, D., Garg, A., & Singh, D. (2017). Development of an adaptive approach for precision agriculture monitoring with drone and satellite data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(12), 5322-5328. https://doi.org/10.1109/JSTARS.2017.2746185 DOI: https://doi.org/10.1109/JSTARS.2017.2746185
Paz, O., Vikou, S., Pilatti, D., Paula, E., & Oliveira, M. (2021). Análise da eficiência do uso de aeronaves remotamente pilotadas no mapeamento de solo exposto em manguezais urbanos. Sociedade & Natureza, 33. https://doi.org/10.14393/SN-v33-2021-59586 DOI: https://doi.org/10.14393/SN-v33-2021-59586
Paz, O., & Paula, E. (2022). Alteração morfológica de barra fluvial após um evento extremo de precipitação: estudo de caso no Rio Jacareí – Litoral Sul do Brasil. William Morris Davis-Revista de Geomorfologia, 3(2), 1-13. https://doi.org/10.48025/ISSN2675-6900.v3n2.2022.158 DOI: https://doi.org/10.48025/ISSN2675-6900.v3n2.2022.158
Paz, O., & Sampaio, T. (2019a). Geração de modelo digital do terreno e extração de parâmetros geomorfométricos a partir de dados coletados por aeronaves remotamente pilotadas. Revista Cerrados, 17(2), 247-264. https://doi.org/10.22238/rc2448269220191702247264 DOI: https://doi.org/10.22238/rc2448269220191702247264
Paz, O., & Sampaio, T. (2019b). Aeronaves remotamente pilotadas na pesquisa geográfica uma análise dos usos, aplicações e desenvolvimento tecnológico associado entre os anos de 2014 e 2017. Revista Interface (Porto Nacional), 17(17), 23-31. https://tinyurl.com/25ffny5e
Ruwaimana, M., Satyanarayana, B., Otero, V., Muslin, A., Syafiq A, M., Ibrahim, S., Raymaekers, D., Koedam, N., & Dahdouh, F. (2018). The advantages of using drones over space-borne imagery in the mapping of mangrove forests. PLOS ONE, 13(7), e0200288. https://doi.org/10.1371/journal.pone.0200288 DOI: https://doi.org/10.1371/journal.pone.0200288
Shafi, U., Mumtaz, R., Iqbal, N., Zaidi, S., Zaidi, S., Hussain, I., & Mahmood, Z. (2020). A multi-modal approach for crop health mapping using low altitude remote sensing, internet of things (IoT) and machine learning. IEEE Access, 8, 112708-112724. https://doi.org/10.1109/ACCESS.2020.3002948 DOI: https://doi.org/10.1109/ACCESS.2020.3002948
Silva, C., Duarte, C., Souto, M., & Sabadia, J. (2015, 25-29 de abril). Anais XVII Simpósio Brasileiro de Sensoriamento Remoto SBSR [Simposio]. Utilização de VANT para geração de ortomosaicos e aplicação do Padrão de Exatidão Cartográfica (PEC), João Pessoa – PB, Brasil. https://tinyurl.com/mrxvxsnw
Silva, J. (2021). Delimitação de voçorocas por meio de GEOBIA (Geographic Object Based Image Analysis) e mineração de dados. Boletim Paranaense de Geociências, 79, 81-99. https://doi.org/10.5380/geo.v79i0.72763 DOI: https://doi.org/10.5380/geo.v79i0.72763
Singh, A. P., Yerudkar, A., Mariani, V., Iannelli, L., & Glielmo, L. (2022). A bibliometric review of the use of unmanned aerial vehicles in precision agriculture and precision viticulture for sensing applications. Remote Sensing, 14(7), 1604. https://doi.org/10.3390/rs14071604 DOI: https://doi.org/10.3390/rs14071604
Sopchaki, C., da Paz, O., Graça, N., & Sampaio, T. (2018). Verificação da qualidade de ortomosaicos produzidos a partir de imagens obtidas com aeronave remotamente pilotada sem o uso de pontos de apoio. Raega-O Espaço Geográfico em Análise, 43, 200-214. https://doi.org/10.5380/raega.v43i0.56564 DOI: https://doi.org/10.5380/raega.v43i0.56564
Sosa, J., Alvarez, N., Cid, N., López, D., & Vallejo, M. (2022). Automated Health Estimation of Capsicum annuum L. Crops by Means of Deep Learning and RGB Aerial Images. Remote Sensing, 14(19), 4943. https://doi.org/10.3390/rs14194943 DOI: https://doi.org/10.3390/rs14194943
Takeshige, R., Onishi, M., Aoyagi, R., Sawada, Y., Imai, N., Ong, R., & Kitayama, K. (2022). Mapping the spatial distribution of fern thickets and vine-laden forests in the landscape of Bornean logged-over tropical secondary rainforests. Remote Sensing, 14(14), 3354. https://doi.org/10.3390/rs14143354 DOI: https://doi.org/10.3390/rs14143354
Whitehurst, D., Joshi, K., Kochersberger, K., & Weeks, J. (2022). Post-flood analysis for damage and restoration assessment using drone imagery. Remote Sensing, 14(19), 4952. https://doi.org/10.3390/rs14194952 DOI: https://doi.org/10.3390/rs14194952
Wyard, C., Beaumont, B., Grippa, T., & Hallot, E. (2022). UAV-based landfill land cover mapping: optimizing data acquisition and open-source processing protocols. Drones, 6(5), 123. https://doi.org/10.3390/drones6050123 DOI: https://doi.org/10.3390/drones6050123
Descargas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.