DOI: 10.25100/eg.v0i30.15182 Espacio y Territorios

Uso de Vant na geração das manchas de inundação no município de Alegre (Espírito Santo)

Uso de Vant en la generación de las manchas de inundación en el municipio de Alegre (Espírito Santo)

Use of UAV in the generation of flood maps in the municipality of Alegre (Espírito Santo)

Tiago Trevenzoli Siqueira¹

Universidade Federal do Espírito Santo, Alegre, Brasil. tiagotrevenzolisiqueira@gmail.com | 0009-0000-9466-557X

Fabricia Benda de Oliveira²

Universidade Federal do Espírito Santo, Vitória, Brasil. fabricia.oliveira@ufes.br | 0000-0002-4456-0275

Carlos Henrique Rodrigues de Oliveira³

Instituto Federal do Espírito Santo, Alegre, Brasil. carlos.oliveira@ifes.edu.br | 0000-0003-4829-8005

Pâmela Silva da Purificação⁴

Universidade Federal do Espírito Santo, Vitória, Brasil. pamela.pur@gmail.com | 0009-0005-0962-6688

Joubert Almeida Monteiro⁵

Universidade Federal do Espírito Santo, Vitória, Brasil. joubertmonteiro@gmail.com | 0009-0004-3362-4802

Gabriel Soares Lopes Gomes⁶

Universidade Federal do Espírito Santo, Vitória, Brasil. gsoares.flo@gmail.com | 0000-0002-3211-3929

Esta obra está bajo licencia internacional <u>Creative Commons Reconocimiento-NoComercial-CompartirIgual 4.0</u>.

¹ Graduando em Sistema de Informação pela Universidade Federal do Espírito Santo (UFES) com bolsa da FAPES. Atua principalmente nos seguintes temas: Sensoriamento Remoto e Geotecnologias.

² Professora Associada II Doutora em Produção Vegetal da Universidade Federal do Espírito Santo (UFES). Professora Permanente nos Programas de Pós-graduação em Gestão Pública e Geografía na mesma instituição. Atua principalmente nos temas: Gestão Pública, SIG, Geoprocessamento y Geotecnologias.

³ Professor Titular Doutor em Ciências Florestais do Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo (Ifes) - campus de Alegre. Professor Permanente no Programa de Pós-Graduação em Agroquímica da UFES e no Programa de Pós-graduação em Agroecologia do Ifes - campus de Alegre. Atua principalmente nos temas: Geoprocessamento, Silvicultura y Viveiros Florestais.

⁴ Mestranda em Geografia pela Universidade Federal do Espírito Santo (UFES) e especialista em Cartografia e Sensoriamento Remoto pela Faculdade Metropolitana do Estado de São Paulo. Atua principalmente nos seguintes temas: Educação e Geotecnologias.

Mestrando em Gestão Pública pela Universidade Federal do Espírito Santo (UFES) e especialista em Administração Pública pelo Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo. Também é pós-graduado no MBA em Gestão de Negócios pela Escola Superior de Agricultura Luiz de Queiroz/USP. Atua principalmente nos seguintes temas: Investigação, Pesquisa, Prevenção de Incêndios e Geotecnologias.

⁶ Pós-doutorado em Geografia pela Universidade Federal do Espírito Santo (UFES). Atua principalmente nos seguintes temas: Geoprocessamento, Silvicultura, Viveiros Florestais y Sistemas Agroflorestais.

Para citar este artigo: Siqueira, T., de Oliveira, F., de Oliveira, C., Purificação, P., Monteiro, J. e Gomes, G. (2025). Uso de Vant na geração das manchas de inundação no município de Alegre (Espírito Santo). *Entorno Geográfico*, (30), e20815182. https://doi.org/10.25100/eg.v0i30.15182

Resumo

Os problemas de inundações são recorrentes das cheias naturais dos rios e das ocupações indevidas em áreas ribeirinhas, gerando por consequência inúmeras perdas econômicas e sociais. O município de Alegre, está localizado na região sul do estado do Espírito Santo, integra a bacia hidrográfica do Rio Itapemirim, sofre frequentemente com esses tipos de desastres. Neste sentido, foram mapeadas as áreas com potencial de inundação para o município de Alegre (ES), incluindo os distritos de Rive, Celina e Café, utilizando o veículo aéreo não tripulado (VANT) como ferramenta de obtenção dos dados. Para o desenvolvimento foram coletados dados pluviométricos, e gerou-se o mapa de pluviosidade. Através do VANT, foram coletadas as ortofotos da área de interesse e criouse o Modelo Digital de Superfície (MDS), por fim foram calculados os pontos de inundação e delimitados os perfis transversais, gerando a mancha de inundação para o evento ocorrido no ano de 2022. Os resultados demonstraram que em período de intensa precipitação as áreas próximas ao rio são atingidas pela inundação. Por meio deste trabalho, destaca a importância da ferramenta VANT para obtenção de MDS possibilitando a obtenção de mapas detalhados de inundação, sendo fundamental na prevenção e no controle de risco ambientais.

Palavras-chave: Aeronaves Remotamente Pilotadas (ARP), Modelo Digital Superfície (MDS), ortomosaico e bacia hidrográfica do rio Itapemirim

Resumen

Los problemas de inundaciones son recurrentes debido a las crecidas naturales de los ríos y a las ocupaciones indebidas en áreas ribereñas, generando, como consecuencia, numerosas pérdidas económicas y sociales. El municipio de Alegre, ubicado en la región sur del estado de Espírito Santo e integrante de la cuenca hidrográfica del río Itapemirim, sufre frecuentemente este tipo de desastres. En este sentido, se mapearon las áreas con potencial de inundación en el municipio de Alegre-ES, incluyendo los distritos de Rive, Celina y Café, utilizando un vehículo aéreo no tripulado (VANT) como herramienta para la obtención de datos. Para el desarrollo del estudio, se recopilaron datos pluviométricos y se generó el mapa de pluviosidad. A través del VANT, se recopilaron las ortofotos del área de interés y se creó el Modelo Digital de Superficie (MDS). Finalmente, se

calcularon los puntos de inundación y se delimitaron los perfiles transversales, generando

la mancha de inundación para el evento ocurrido en el año 2022. Los resultados

demostraron que, en períodos de intensa precipitación, las áreas cercanas al río se ven

afectadas por inundaciones. Este trabajo destaca la importancia de la herramienta VANT

para la obtención de MDS, lo que permite generar mapas detallados de inundaciones,

siendo fundamental para la prevención y el control de riesgos ambientales.

Palabras clave: Aeronaves Remotamente Pilotadas (ARP), Modelo Digital de Superficie

(MDS), ortofotomosaico y cuenca hidrográfica del Río Itapemirim

Abstract

The problems of flooding are recurrent due to natural river overflows and inappropriate

occupation of riverbank areas, leading to numerous economic and social losses. The

municipality of Alegre, located in the southern region of the state of Espírito Santo and

part of the Itapemirim River basin, frequently suffers from these types of disasters. In this

context, areas with flooding potential were mapped for the municipality of Alegre-ES,

including the districts of Rive, Celina, and Café, using an unmanned aerial vehicle (UAV)

as a data collection tool. For the development of the study, pluviometric data were

collected, and a rainfall map was generated. Using the UAV, orthophotos of the area of

interest were collected, and a Digital Surface Model (DSM) was created. Finally, flood

points were calculated, and cross-sectional profiles were delineated, resulting in the flood

map for the event that occurred in 2022. The results showed that during periods of intense

precipitation, areas near the river are affected by flooding. This work highlights the

importance of the UAV tool for obtaining DSMs, enabling the creation of detailed flood

maps, which are fundamental for environmental risk prevention and control.

Keywords: Remotely Piloted Aircraft (RPA), Digital Surface Model (DSM),

orthomosaic and Itapemirim river basin

Recebido: 22 de agosto de 2025

Aceito: 15 de setembro de 2025

Publicado: 13 de novembro de 2025

1. Introdução

O município de Alegre, localizado na região sul do estado do Espírito Santo, destaca-se

por sua posição geográfica na Serra do Caparaó, a uma altitude média de 254 metros. A

3

cidade encontra-se a aproximadamente 205 km da capital, Vitória, abrangendo uma área de 778,6 km² e uma população estimada de 29.177 habitantes (IBGE, 2022). Além do distrito-sede, o município é dividido em sete distritos: Anutiba, Araraí, Café, Celina, Rive, Santa Angélica e São João do Norte (PROATER, 2018). A região possui uma topografia acidentada, com solos rasos, moderadamente drenados e suscetíveis à erosão, além de apresentar baixa capacidade de retenção hídrica e reserva mineral. Sua vegetação natural é caracterizada pela Floresta Estacional Semidecidual, pertencente ao Bioma Mata Atlântica (EMBRAPA, 2006). Segundo a classificação climática de Köppen, o clima predominante é Cwa, marcado por invernos secos e verões chuvosos, com precipitações anuais entre 1.200 e 1.600 mm e temperatura média de 24°C (INMET, s.f.).

O principal curso d'água do município, o rio Alegre, forma-se pela confluência dos ribeirões Arraial do Café e Vargem Alegre. Com uma extensão de cerca de 2.400 metros até um barramento situado próximo à área urbana, o rio é estratégico para o município, incluindo a operação de uma Pequena Central Hidrelétrica (PCH) pela empresa EDP, responsável por parte da geração de energia local. A montante do barramento, o rio recebe a contribuição do córrego Varjão da Cutia, que atravessa bairros importantes de Alegre, ampliando a complexidade hidrológica e ambiental da região (Caiado, 2013).

A ocorrência de precipitações intensas pode resultar em um volume de escoamento superficial superior à capacidade de drenagem de uma bacia hidrográfica, levando à inundação das áreas ribeirinhas. Os impactos decorrentes desses eventos estão diretamente relacionados ao grau de ocupação da várzea e à frequência das inundações (Tucci, 2004).

No Brasil, os eventos de inundações são comuns em grande parte dos centros urbanos, no município de Alegre-Es não é diferente. Embora sejam fenômenos naturais, sua frequência e severidade têm sido agravadas por fatores antrópicos, resultando no assoreamento dos rios e na intensificação dos danos ambientais nas bacias hidrográficas (Ministério do Planejamento e Orçamento, 1998). As áreas mais vulneráveis a inundações geralmente são planícies fluviais e regiões de baixa declividade, onde há maior tendência ao acúmulo de água e sedimentos (Enomoto, 2004).

As áreas urbanas enfrentam recorrentes problemas relacionados às inundações, frequentemente associados ao descumprimento da legislação de uso e ocupação do solo, além da ausência de uma gestão eficiente, na qual informações geográficas são essenciais.

Campana e Tucci (2001) destacam que um dos principais desafios do poder público é antecipar os impactos da ocupação desordenada do espaço urbano, antes que se concretizem. Embora a prevenção total de desastres naturais seja inviável, é possível adotar estratégias para reduzi-los e mitigá-los, minimizando seus impactos socioeconômicos e ambientais (Machado e Cohen, 2009).

Diante desse cenário, o uso de tecnologias avançadas tem se mostrado fundamental para compreender e mitigar os riscos associados às inundações. Os Sistemas de Informações Geográficas (SIG), por exemplo, constituem ferramentas poderosas para análise e gestão de dados espaciais, permitindo a criação de mapas de risco que auxiliam no planejamento urbano e na tomada de decisões (Santos et al., 2010).

Os Veículos Aéreos Não Tripulados (VANTs) é uma ferramenta importante que vem ganhando destaque por sua capacidade de realizar levantamentos topográficos com alta precisão e custo reduzido. A partir das imagens obtidas por VANTs, é possível gerar produtos como ortofotos de alta resolução, com GSD entre 0,05 e 0,3 metros, e Modelos Digitais de Superfície (MDS), que fornecem representações tridimensionais detalhadas da superfície terrestre (Buffon et al., 2017).

Além disso, diversos pesquisadores têm conduzido estudos sobre a utilização de Veículos Aéreos Não Tripulados em aplicações voltadas para a gestão de desastres. Autores como Murphy et al. (2011), desta a relevância do mapeamento com VANTs na redução dos riscos associados a desastres naturais e antropogênicos. O uso do VANT pode ser empregado em todas as fases do desastre, incluindo a etapa prévia (preparação, prevenção e mitigação), na fase de resposta durante o evento e na fase posterior (recuperação).

As ortofotos geradas a partir do processamento das imagens aéreas obtidas por VANTs desempenham um papel essencial na análise e no monitoramento de áreas de risco. Além das ortofotos, outros produtos, como o Modelos Digitais de Superfície (MDS) e Modelo Digital de Terreno (MDT), podem ser extraídos e utilizados para aprimorar estudos sobre inundações em áreas urbanas (Buffon et al., 2018).

Os Modelos Digitais de Superficie constituem uma ferramenta fundamental para representar as variações altimétricas da superficie terrestre. Eles possuem ampla aplicação em diversas áreas, incluindo mapeamento digital de solos, análises geomorfológicas, planejamento de colheitas florestais, delimitação de Áreas de Preservação Permanente (APP) ao longo de cursos d'água e gestão de bacias hidrográficas

(Junior et al., 2016). Por meio de seus produtos é possível gerar mapas de inundação, sendo uma ferramenta de suma importância para o controle e prevenção de eventos de cheia.

Neste contexto, este estudo possui como objetivo delimitar as áreas de inundação nas zonas urbanas de Alegre e nos distritos de Café, Celina e Rive, utilizando os VANTs como ferramenta principal de coleta de dados. Além disso, busca-se gerar mapas de pluviosidade, gráficos de precipitação, Modelos Digitais de Superfície (MDS) e mapas de manchas de inundação, contribuindo para o planejamento urbano sustentável e a mitigação dos impactos socioambientais decorrentes das inundações.

2. Material e Métodos

2.1. Localização

A área de estudo corresponde ao município de Alegre (ES), incluindo o centro da cidade e os distritos de Rive, Celina e Café (Figura 1). Situa-se na região sul do estado do Espírito Santo e possui altitude média de 254 metros. O município está inserido na Serra do Caparaó, e a aproximadamente 205 km da capital do estado, Vitória. O município abrange uma área de aproximadamente 778,6 km², apresenta uma população estimada de 29.177 habitantes (IBGE, 2022).

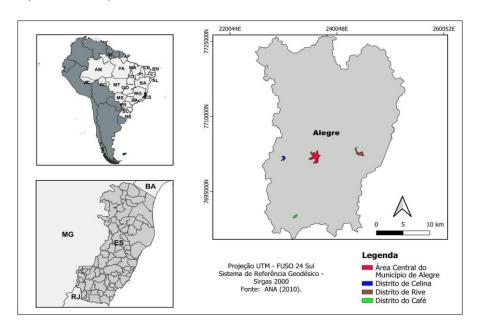


Figura 1. Localização da área de estudo: Área central do Município de Alegre-ES

Fonte: Elaborada pelos autores (2024)

2.2. Metodologia

Na seleção dos dados cartográficos e montagem do banco de dados geográfico foi utilizada a plataforma Geobases, onde foram obtidos dados em shapefile (.shp), referentes a área de estudo, de diferentes categorias, sendo elas: arruamentos, estrada, rodovia, vegetação.

Na geração do modelo de uso e cobertura do solo, utilizou-se imagens do sensor Landsat 8 (Sensor Operational Land Imager - OLI-TIRS), coletadas por meio do catálogo de imagens (DGI-INPE), que possui uma resolução espacial de 30 metros e radiométrica de 16 bits. Por intermédio das bandas multiespectrais 6, 5 e 4, foi criada a composição falsa cor RGB-654 (red, green, blue). Por último, realizou-se o método de classificação supervisionada, para gerar as classes: Pastagem, vegetação nativa, Café, afloramento rochoso, massa d'água e área edificada.

Para a criação do mapa de precipitação, foram utilizados dados de 73 estações pluviométricas no período de 2003 a 2022. As falhas nos dados foram preenchidas com informações das estações mais próximas, aplicando-se a regressão linear múltipla. Em seguida, realizou-se a interpolação dos dados, obtendo-se, assim, a distribuição da pluviometria.

Na etapa de coleta das ortofotos em campo, foi realizado planejamento de voo determinando-se a sobreposição longitudinal e lateral de 80%, a velocidade média de voo de 9 mph e a escala de voo com GSD de 2,5 cm, para assim garantir produto das ortofotos cobrisse toda a área de interesse. Este processo foi realizado para o centro urbano de Alegre-ES e os distritos do Café, de Celina e de Rive.

No processamento as aerofotos foram carregadas no software realizou-se a orientação espacial das imagens, na qual determinou a posição e a orientação de cada imagem conforme suas coordenadas UTM. Posteriormente, foram geradas as nuvens de pontos densificados por meio do algoritmo Structure from Motion (SfM).

Esse algoritmo realiza o alinhamento automático das fotografías aéreas sobrepostas, promovendo a calibração entre as imagens e, posteriormente, a extração da nuvem de pontos. Os pontos são extraídos por correspondência de regiões, formando uma nuvem densa a partir das triangulações entre as imagens calibradas.

Em seguida foi realizada a filtragem e classificação da nuvem de pontos, possibilitando a estruturação dos dados em uma malha triangular irregular. Esse método permite a criação de uma superfície a partir de pontos espaçados de forma irregular, adaptando-se à densidade dos pontos detectados durante o processamento dos dados homólogos. A partir desse modelo, é possível representar tridimensionalmente a superfície do terreno mapeado, possibilitando gerar o Modelo Digital de Superfície (MDS). Com a criação deste modelo, foi possível obter informações planimétricas para cálculo de perímetro, área e volume, além da obtenção de perfis topográficos e seções transversais.

O produto gerado no processamento foi o ortofotomosaico, que consiste na junção das imagens individuais. O software executa esse procedimento suavizando as linhas de transição entre as imagens para garantir uma visualização contínua e precisa.

Para a geração da mancha de inundação, foram utilizados dados pluviométricos de precipitação, além de informações sobre vazão, cota e declividade para o rio Alegre, referentes ao evento de 17/02/2022, no qual o município de Alegre registrou um alto volume de chuva acumulada em curto período. Foi possível calcular os pontos de inundação e gerar seções transversais, utilizando o Modelo Digital de Superfície (MDS) obtido pelo aerolevantamento.

Através da álgebra de mapas, foi criado um mapa da área molhada, utilizando os pontos de inundação e as seções transversais estimadas com base no MDS. Esse procedimento permitiu a obtenção da mancha de inundação.

3. Resultados

A Tabela 1 e a Figura 2 mostram as classes de uso e cobertura do solo encontradas através da classificação da imagem de satélite feita para o Município de Alegre, sendo elas: pastagem, vegetação nativa, Café, afloramento rochoso, massa d'água e área edificada.

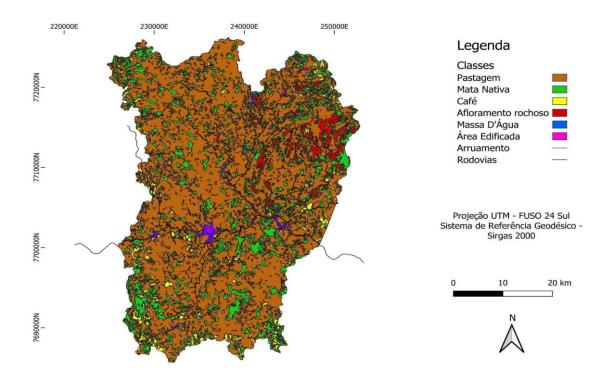


Figura 2. Mapa de uso e cobertura do solo para o município de Alegre-ES

Fonte: Elaborada pelos autores (2024)

Tabela 1. Classes de uso e cobertura dos solos observadas na área de estudo.

Classe	Área (hectares)	0/0
Pastagem	50.643,2	65,6
Vegetação nativa	16.057,6	20,8
Café	5.481,2	7,1
Afloramento rochoso	2.856,4	3,7
Massa d'água	1.466,8	1,9
Área edificada	694,8	0,9
Total	77.200,0	100

Fonte: Elaborada pelos autores (2024)

Observando Tabela 1 nota-se que o município de Alegre é majoritariamente composto por áreas de pastagem (65,6%) e porções de vegetação natural (20,8%), com as demais áreas apresentando uma presença menos significativa. A expansão das áreas de pastagem pode ser atribuída principalmente pelo desmatamento, ligados diretamente às atividades antrópicas na região (IEMA, 2018).

A Figura 3 apresenta o mapa de precipitação para o estado do Espírito Santo, gerado por meio do método de Interpolação por Distância Inversa (IDW). A partir desse mapa, observa-se que a região sul, onde se localiza o município de Alegre, apresenta um elevado índice pluviométrico, próximo de 1.200 mm, evidenciando que a área possui altos índices de precipitação ao longo da série histórica.

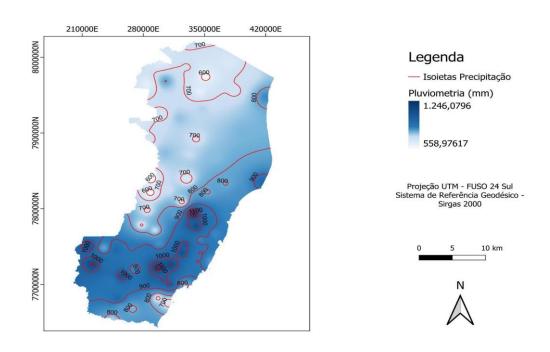


Figura 3. Mapa de precipitação para o estado do Espírito Santo, por meio do método IDW

Fonte: Produção do próprio autor (2024)

As Figuras 4 e 5 apresentam a média mensal e anual da série histórica referente ao município de Alegre (Espírito Santo). No gráfico da Figura 4, é possível observar que os meses com maior índice pluviométrico são dezembro (superior a 200 mm), seguido de novembro, março, janeiro e fevereiro (próximos a 150 mm). Por sua vez, no gráfico da

Figura 5, verifica-se que os anos de 2004, 2005 e 2022 tiveram uma média superior a 1200 mm, caracterizando-os como os períodos com os maiores índices de precipitação.

Figura 4. Gráfico da média mensal para o município de Alegre (Espírito Santo), elaborado com base nos dados da série histórica da Agência Nacional de Águas (ANA) para o período de 2003 a 2022

Fonte: Elaborado pelos autores (2024)

Figura 5. Gráfico da média anual para o município de Alegre (Espírito Santo), elaborado com base nos dados da série histórica da Agência Nacional de Águas (ANA) para o período de 2003 a 2022

Fonte: Elaborado pelos autores (2024)

Na Tabela 2 são apresentados os dados de altimetria calculados, obtidos através dos produtos de aerolevantamento, para as áreas de estudo.

Tabela 2. Altimetria calculada para o município de Alegre, Bairro Guararema, Centro, Bairro Vila do Sul, Distrito de Celina, Distrito de Café e Distrito de Rive.

	Altitude cal	Altitude calculada (m)							
Pontos	Guararema	Centro	Vila do Sul	Celina	Café	Rive			
1	237,23	232,68	243,43	624,51	611,05	117,95			
2	238,84	233,67	243,95	626,43	612,97	117,98			
3	239,57	233,95	244,26	626,89	611,63	116,94			
4	238,31	233,80	244,89	626,97	611,89	116,65			
5	236,77	334,99	243,97	625,86	611,93	115,96			
6	238,49	233,48	243,58	623,88	610,96	115,89			

Fonte: Elaborado pelos autores (2024)

Para a geração da mancha de inundação, inicialmente foram plotados os pontos de indução, por meio deste foram gerados os perfis transversais para as áreas urbanas de Alegre, incluindo os bairros Guararema, Centro e Vila do Sul, bem como os distritos de Celina, Café e Rive (Figura 6).

A partir das seções transversais e dos pontos de indução, foi possível elaborar os mapas de inundação referentes ao evento ocorrido em fevereiro de 2022, no município de Alegre (Figura 7).

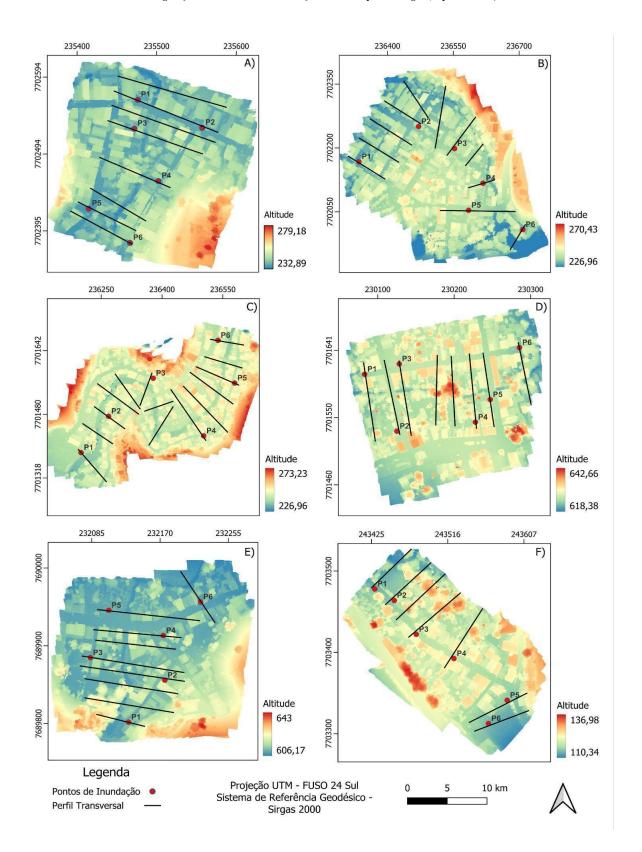


Figura 6. Perfis transversais e pontos de inundação para o município de Alegre Bairros A) Guararema, B) Centro, C) Vila do Sul e distritos D) Celina, E) Café e F) Rive

Fonte: Elaborado pelos autores (2024)

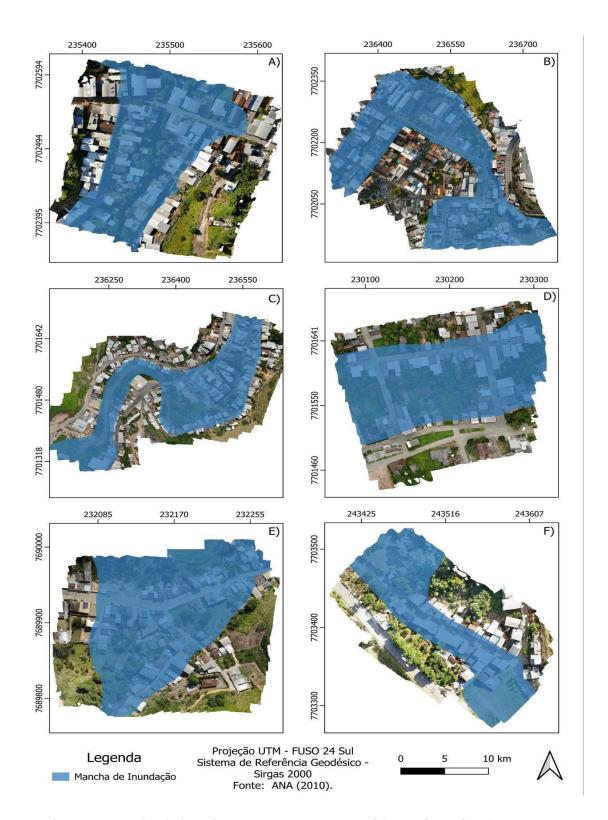


Figura 7. Mancha de inundação para o evento ocorrido em fevereiro de 2022, no município de Alegre Bairros A) Guararema, B) Centro, C) Vila do Sul e distritos D) Celina, E) Café e F) Rive

Fonte: Elaborado pelos autores (2024

4. Discussão

As áreas suscetíveis a inundações são predominantemente ocupadas por construções urbanas, como residências, estradas, pavimentações e outras infraestruturas. Essas ocupações, aliadas às baixas altitudes dessas regiões, favorecem o acúmulo de água no solo e reduzem sua capacidade de drenagem (Nascimento, 2007).

Os resultados da mancha de inundação evidenciam que as áreas urbanas de Alegre e dos distritos de Celina, Café e Rive são impactadas por eventos de inundação, especialmente nos trechos próximos ao Rio Alegre, ao córrego Varjão da Cutia e aos Ribeirões Arraial do Café. Esse fenômeno ocorre devido ao aumento significativo do fluxo de água, associado à ausência de um escoamento adequado, o que resulta no transbordamento do rio.

A utilização do VANT mostrou-se eficaz na obtenção de dados altimétricos detalhados, permitindo a criação de mapas de inundação de alta precisão. Esses mapas são fundamentais para o planejamento urbano e a formulação de políticas públicas voltadas à gestão de riscos ambientais.

Também se verificou que a expansão urbana desordenada tem agravado as regiões vulneráveis a enchentes. O aumento da impermeabilização do solo e a ocupação irregular de áreas de várzea têm reduzido a capacidade de infiltração da água, intensificando os impactos das fortes chuvas. A análise dos dados capturados pelos VANTs indicou que a adoção de medidas como a desocupação e reflorestamento de margens pode contribuir significativamente para a redução dos efeitos das inundações.

Outro aspecto relevante identificado no estudo foi a influência das variações sazonais no comportamento das cheias. A correlação entre os dados pluviométricos históricos e as imagens capturadas permitiu mapear áreas críticas de acúmulo de água e compreender a dinâmica dos eventos de inundação. Esse tipo de análise é essencial para aprimorar os sistemas de alerta precoce e garantir uma resposta mais ágil e eficiente por parte das autoridades locais.

Além disso, a viabilidade econômica do uso de VANTs para monitoramento ambiental deve ser considerada. O custo relativamente baixo dessas operações, aliado à precisão dos dados obtidos, faz com que essa tecnologia seja uma alternativa viável para municípios

que precisam monitorar grandes áreas sem dispor de altos investimentos em infraestrutura.

5. Conclusões

A partir dos resultados obtidos no trabalho, observa-se que a utilização do VANT para obtenção dos dados apresentou benefícios, como imagens altíssima resolução espacial e temporal quando comparados às imagens tradicionais de satélites, e também baixo custo relacionados à sua aquisição.

O município de Alegre está situado em uma região com uma estação chuvosa bem definida, caracterizada por uma alta concentração de chuvas nos meses de novembro a março, que corresponde a 60 a 70% do total anual. Isso torna o planejamento para o período de cheias mais viável. No entanto, a topografia acidentada e elevada da região, juntamente com solos de baixa capacidade de retenção de água, favorece o escoamento do fluxo de água para as áreas mais baixas, contribuindo para eventos de inundação.

Os resultados demonstram que os centros urbanos adjacentes aos leitos do Rio Alegre, do córrego Varjão da Cutia e do Ribeirão Arraial do Café estão altamente suscetíveis a sofrer impactos significativos em decorrência das cheias dos corpos hídricos.

A incorporação de VANTs para a geração de MDS e mapeamento de inundação representa um avanço significativo na prevenção e no monitoramento de desastres naturais. O mapeamento realizado no município de Alegre (Espírito Santo) demonstrou a viabilidade dessa tecnologia para a gestão de riscos ambientais, sendo uma ferramenta essencial para subsidiar estratégias de adaptação e mitigação dos impactos das inundações.

Este estudo alcançou com êxito seu objetivo principal de gerar a mancha de inundação para o evento ocorrido no mês de fevereiro de 2022. Apresentando-se base dados de qualidade com o objetivo de fornecer informação que contribua para um melhor planejamento e decisões a serem implementadas em eventos futuros.

6. Considerações finais

Contribuição dos autores:

Tiago Trevenzoli Siqueira: concepção, redação, metodologia (aplicação de instrumentos), revisão; Fabricia Benda de Oliveira: concepção, revisão, supervisão, validação de instrumento, análise formal e recursos; Carlos Henrique Rodrigues de Oliveira: revisão, supervisão, validação de instrumento; Pâmela Silva da Purificação: metodologia (aplicação de instrumentos), revisão; Joubert Almeida Monteiro: metodologia (aplicação de instrumentos), revisão; Gabriel Soares Lopes Gomes: redação, metodologia (aplicação de instrumentos), revisão.

Financiamento:

Os autores declaram que receberam recursos da Fundação de Amparo à Pesquisa e Inovação do Espírito Santo (FAPES) para desenvolvimento do trabalho, apresentação do mesmo no evento RIDOT e para publicação deste artigo.

Conflito de interesses:

Os autores declaram que não têm nenhum conflito de interesse na redação ou publicação deste artigo.

Implicações éticas:

Os autores declaram que não tem nenhum tipo de implicação ética que deva ser declarada na escrita e publicação deste artigo.

7. Referências bibliográficas

Agência Nacional de Águas e Saneamento Básico (ANA). (s.f.). *Catálogo de Metadados da ANA*. https://tinyurl.com/ysvnd6vy

Buffon, E., Paz, O. e Sampaio, T. (2017). Uso de Veículo Aéreo Não Tripulado (Vant) Para Mapeamento das Vulnerabilidades à Inundação Urbana: Referenciais e Bases de Aplicação. *Revista do Departamento de Geografia USP*, 180–189. https://doi.org/10.11606/rdg.v0ispe.132547

- Buffon, E., Sampaio, T. e Paz, O. (2018). Veículo aéreo não tripulado (VANT) aplicação na análise de inundações em áreas urbanas. *Revista de Geografia e Ordenamento do Território (GOT)*, (13), 85–108, http://dx.doi.org/10.17127/got/2018.13.004
- Caiado, M. (2013). Plano Diretor de Águas Pluviais e Fluviais do Município de Alegre:

 Volume I: Diagnóstico e prognóstico de inundações. Secretaria de Saneamento,

 Habitação e Desenvolvimento Urbano, Governo do Espírito Santo.

 https://tinyurl.com/4nbtaryd
- Campana, N. e Tucci, C. (2001). Predicting floods from urban development scenarios: case study of the Dilúvio Basin, Porto Alegre, Brazil. *Urban Water*, *3*(1–2), 113–124. https://doi.org/10.1016/S1462-0758(01)00004-8
- Empresa Brasileira de pesquisa agropecuária (EMBRAPA). (2006). Sistema brasileiro de classificação de solos. (2ª ed.). https://tinyurl.com/ymdjeaxd
- Enomoto, C. (2004). *Método para elaboração de mapas de inundação: Estudo de caso na bacia do rio Palmital, Paraná* [Dissertação de Mestrado, Universidade Federal do Paraná]. https://tinyurl.com/5fscbfpm
- Instituto Brasileiro de Geografia e Estatística (IBGE). (2022). *Cidades e Estados*. https://tinyurl.com/mwkf8aew
- Instituto de Meio Ambiente e Recursos Hídricos (IEMA). (2018). *Atlas da Mata Atlântica do Estado do Espírito Santo 2007 2008 / 2012 2015*. https://tinyurl.com/mr3xjp3p
- Instituto Nacional de Meteorologia (INMET). (s.f.). *Dados históricos anuais 2010* [Arquivo Excel]. https://portal.inmet.gov.br/dadoshistoricos
- Junior, H., Lastoria, G., Filho, A., Dalmas, F. e Correa, L. (2016). Mapeamento das APP's de hidrografia e declividade como subsídio a gestão da bacia hidrográfica do rio Formoso (Mato Grosso do Sul). *Revista Geociências*, *15*(2), 128–140.

- Machado, S. e Cohen, S. (2009). *A rota das chuvas em Petrópolis: cenário de uma inundação*. Em 5º Seminário Internacional de Defesa Civil (pp. 1–9). São Paulo: DEFENCIL. Anais eletrônicos Artigos.
- Ministério do Planejamento e Orçamento. (1998). *Glossário de defesa civil: estudos de riscos e medicina de desastres* (A. De Castro, Coord.; 2ª ed.). https://tinyurl.com/yvbkvewc
- Murphy, R., Steimle, E., Hall, M., Lindemuth, M., Trejo, D., Hurlebaus, S., Medina-Cetina, Z. e Slocum, D. (2011). Robot-Assisted Bridge Inspection. *Journal of Intelligent & Robotic* Systems, 64, 77–95. https://doi.org/10.1007/s10846-010-9514-8
- Nascimento, E., Quelhas, O. e Fonseca, P. (2007). Qualidade do meio ambiente urbano: medidas para o controle do escoamento superficial na cidade do Rio de Janeiro, Brasil. *Ciência e Engenharia*, 16(1/2), 81–87. https://tinyurl.com/3yra5m25
- Programa de Assistência Técnica e Extensa o Rural (PROATER). (2015). *Planejamento* 2015–2018. https://tinyurl.com/2ed4x3d7
- Rathinam, S., Kim, Z. and Sengupta, R. (2008). Vision-Based Monitoring of Locally Linear Structures Using an Unmanned Aerial Vehicle. *Journal of Infrastructure Systems*, *14*(1). https://doi.org/10.1061/(ASCE)1076-0342(2008)14:1(52)
- Santos, A., Louzada, F. e Eugenio, F. (2010). *ARCGIS 9.3 TOTAL: Aplicações para Dados Espaciais*. (2ª ed.). CAUFES. https://tinyurl.com/mznmwzm8
- Tucci, C. (2004). Hidrologia: ciência e aplicação. (3ª ed., Vol. 4). UFRGS.